Airports and surrounding airspaces are limited in terms of capacity and represent the major bottleneck in the air traffic management system. This paper proposes a two level model to tackle the integrated optimization problem of arrival, departure, and surface operations. The macroscopic level considers the terminal airspace management for arrivals and departures and airport capacity management, while the microscopic level optimizes surface operations and departure runway scheduling. An adapted simulated annealing heuristic combined with a time decomposition approach is proposed to solve the corresponding problem. Computational experiments performed on real-world case studies of Paris Charles De-Gaulle airport, show the benefits of this integrated approach.
Data mining seems to be a promising way to tackle the problem of unpredictability in MRO organizations. The Amsterdam University of Applied Sciences therefore cooperated with the aviation industry for a two-year applied research project exploring the possibilities of data mining in this area. Researchers studied more than 25 cases at eight different MRO enterprises, applying a CRISP-DM methodology as a structural guideline throughout the project. They explored, prepared and combined MRO data, flight data and external data, and used statistical and machine learning methods to visualize, analyse and predict maintenance. They also used the individual case studies to make predictions about the duration and costs of planned maintenance tasks, turnaround time and useful life of parts. Challenges presented by the case studies included time-consuming data preparation, access restrictions to external data-sources and the still-limited data science skills in companies. Recommendations were made in terms of ways to implement data mining – and ways to overcome the related challenges – in MRO. Overall, the research project has delivered promising proofs of concept and pilot implementations
MULTIFILE