In the rapidly evolving aviation sector, airports are pivotal as centers of infrastructure and economic activity. Despite advancements, the understanding of airport apron turnaround activities being developed for autonomous operations and their potential to transform key improvement areas remains limited. This study addresses these research gaps through a systematic literature review (SLR) of 23 selected articles from an initial pool of 425, focusing on advancements from 2019 to 2023. The results indicate considerable automation in labour-intensive tasks like baggage and passenger handling, leading to enhancements in safety, efficiency, and capacity. Nonetheless, a significant gap remains in research evaluating the cost-effectiveness of these technologies. This review provides important perspectives for decision-makers and enhances the strategic conversation regarding the implementation of autonomous systems in airport ground operations.
DOCUMENT
The aeronautical industry is expanding after a period of economic turmoil. For this reason, a growing number of airports are facing capacity problems that can sometimes only be resolved by expanding infrastructure, with the inherent risks that such decisions create. In order to deal with uncertainty at different levels, it is necessary to have relevant tools during an expansion project or during the planning phases of new infrastructure. This article presents a methodology that combines simulation approaches with different description levels that complement each other when applied to the development of a new airport. The methodology is illustrated with an example that uses two models for an expansion project of an airport in The Netherlands. One model focuses on the operation of the airport from a high-level position, while the second focuses on other technical aspects of the operation that challenge the feasibility of the proposed configuration of the apron. The results show that by applying the methodology, analytical power is enhanced and the risk of making the wrong decisions is reduced. We identified the limitations that the future facility will have and the impact of the physical characteristics of the traffic that will operate in the airport. The methodology can be used for tackling different problems and studying particular performance indicators to help decision-makers take more informed decisions.
DOCUMENT
Design educators and industry partners are critical knowledge managers and co-drivers of change, and design graduate and post-graduate students can act as catalysts for new ideas, energy, and perspectives. In this article, we will explore how design advances industry development through the lens of a longitudinal inquiry into activities carried out as part of a Dutch design faculty-industry collaboration. We analyze seventy-five (75) Master of Science (MSc) thesis outcomes and seven (7) Doctorate (PhD) thesis outcomes (five in progress) to identify ways that design activities have influenced advances in the Dutch aviation industry over time. Based on these findings, we then introduce an Industry Design Framework, which organizes the industry/design relationship as a three-layered system. This novel approach to engaging industry in design research and design education has immediate practical value and theoretical significance, both in the present and for future research. https://doi.org/10.1016/j.sheji.2019.07.003 LinkedIn: https://www.linkedin.com/in/christine-de-lille-8039372/
MULTIFILE