Nowadays the main airports throughout the world are suffering because their capacity are getting close to saturation due to the air traffic which is still increasing besides the economic crisis and oil prices. In addition, the forecasts predict an increase in air traffic of at least 3.6% until 2020. This situation makes very important to come up with solutions to alleviate capacity congestions in the main airports throughout the world. Capacity has been perceived traditionally as the factor to be addressed in airport systems and it is faced through a technical perspective. In this paper we propose to change the mind-set and view capacity of airport systems taking other factors than pure technical ones. The discussion is illustrated with the example of Schiphol Airport.
MULTIFILE
The airport of Mexico City has been declared saturated for most of the day. For that reason, the Mexican government announced a couple of years ago the construction of a completely new one which is supposed to be operative in 2020 in its first phase. However, the technical issues and the economic downturn in the country jeopardise the project; for that reason, it is important to have alternatives that allow investing in a progressive fashion so that the investments are not lost or end up in useless infrastructure like the ones that have taken place in other parts of the world. The current work presents a simulation-based study of the alternative of using one of the runways of the new airport in a remote fashion in case the original project is delayed or even cancelled. The results indicate that the proposed infrastructure alleviates the congestion problem in the current airport, and at the same time allows the traffic growth with performance indicators similar to airports that have remote runways as in the case of Schiphol in The Netherlands.
DOCUMENT
The aeronautical industry is expanding after a period of economic turmoil. For this reason, a growing number of airports are facing capacity problems that can sometimes only be resolved by expanding infrastructure, with the inherent risks that such decisions create. In order to deal with uncertainty at different levels, it is necessary to have relevant tools during an expansion project or during the planning phases of new infrastructure. This article presents a methodology that combines simulation approaches with different description levels that complement each other when applied to the development of a new airport. The methodology is illustrated with an example that uses two models for an expansion project of an airport in The Netherlands. One model focuses on the operation of the airport from a high-level position, while the second focuses on other technical aspects of the operation that challenge the feasibility of the proposed configuration of the apron. The results show that by applying the methodology, analytical power is enhanced and the risk of making the wrong decisions is reduced. We identified the limitations that the future facility will have and the impact of the physical characteristics of the traffic that will operate in the airport. The methodology can be used for tackling different problems and studying particular performance indicators to help decision-makers take more informed decisions.
DOCUMENT