This study focuses on the feasibility of electric aircraft operations between the Caribbean islands of Aruba, Bonaire, and Curaçao. It explores the technical characteristics of two different future electric aircraft types (i.e., Alice and ES-19) and compares their operational requirements with those of three conventional types currently in operation in the region. Flight operations are investigated from the standpoint of battery performance, capacity, and consumption, while their operational viability is verified. In addition, the CO2 emissions of electric operations are calculated based on the present energy mix, revealing moderate improvements. The payload and capacity are also studied, revealing a feasible transition to the new types. The impact of the local climate is discussed for several critical components, while the required legislation for safe operations is explored. Moreover, the maintenance requirements and costs of electric aircraft are explored per component, while charging infrastructure in the hub airport of Aruba is proposed and discussed. Overall, this study offers a thorough overview of the opportunities and challenges that electric aircraft operations can offer within the context of this specific islandic topology.
MULTIFILE
This research aims to find relevant evidence on whether there is a link between air capacity management (ACM) optimization and airline operations, also considering the airline business model perspective. The selected research strategy includes a case study based on Paris Charles de Gaulle Airport to measure the impact of ACM optimization variables on airline operations. For the analysis we use historical data which allows us to evaluate to what extent the new schedule obtained from the optimized scenario disrupts airline planned operations. The results of this study indicate that ACM optimization has a substantial impact on airline operations. Moreover, the airlines were categorized according to their business model, so that the results of this study revealed which category was the most affected. In detail, this study revealed that, on the one hand, Full-Service Cost Carriers (FSCCs) were the most impacted and the presented ACM optimization variables had a severe impact on slot allocation (approximately 50% of slots lost), fuel burn accounted as extra flight time in the airspace (approximately 12 min per aircraft) and disrupted operations (approximately between 31% and 39% of the preferred assigned runways were changed). On the other hand, the comparison shows that the implementation of an optimization model for managing the airport capacity, leads to a more balanced usage of runways and saves between 7% and 8% of taxi time (which decreases fuel emission).
MULTIFILE
Airport capacity, expressed as the maximum number of air traffic movements that can be accommodated during a given period of time under given conditions, has become a hard constraint to the air transportation, due to the scarce amount of resources on the ground and restrictions in the airspace. Usually the problem of capacity at airports is studied separating airspace operations from ground operations, but it is evident that the two areas are tied to each other. This work aims at developing a simulation model that takes into account both airspace and ground operations. The approach used is a divide and conquer approach, which allows the combination of four different models. The four models refer to the airside, and airspace operations. This approach allows to evaluate the system from diffrent angles depending on the scope of the study, the results show the analytic potential of this approach.