Deze praktijkaanbeveling is oorspronkelijk vervaardigd in het kader van het "Technologie Centrum voor Verbinden" van het NIL. Titaan is in vergelijking met staal en aluminium een duur metaal. Titaan wordt voornamelijk gebruikt in de procesindustrie (reactorvaten) vanwege zijn zeer goede corrosiewerende eigenschappen. Het materiaal is verder uitstekend geschikt voor medische toepassingen zoals pacemakers en prothesen. De hoge sterkte/gewichtsverhouding van titaanlegeringen maakt dit materiaal interessant voor toepassingen in de ruimtevaart en voor sportartikelen zoals fietsframes en tennisrackets. De toepassing als brilmontuur heeft dit materiaal te danken aan de combinatie van goede corrosiewerende eigenschappen, licht gewicht en hoge sterkte. Door de recentelijke daling van de titaanprijs worden titaanlegeringen ook toepast voor offshore constructies vanwege de combinatie van goede corrosiebestendigheid en hoge sterkte. Een geheel nieuwe toepassing is het gebruik van titaan in de architectuur. De decoratieve matgrijze kleur van het titaanoppervlak maakt dit materiaal interessant voor overkappingen van hallen, stationruimtes e.d.
De eerste uitgave van deze publicatie is in 1995 samengesteld door de werkgroep "Dieptrekken van dunne plaat, staal, aluminium" en geeft gerichte theoretische en praktische informatie ten behoeve van respectievelijk de gebruikers van het omvormproces (dieptrekken, kraagtrekken, strekken), geïnteresseerden in dit proces, technische cursussen en opleidingen. In 2008 is deze publicatie aangepast aan de huidige stand der techniek. De inhoud van deze publicatie behandelt de aspecten welke voor het vormgeven van plaat door middel van dieptrekken, kraagtrekken en strekken van belang zijn. De achterin toegevoegde supplementen over materialen en over machines en gereedschappen geven processpecifieke informatie over de desbetreffende onderwerpen. In de voorlichtingspublicaties VM 111 "Materialen" en VM 112 "Machines en gereedschappen" worden de algemene gegevens over deze onderwerpen behandeld.
Deze publicatie is binnen het project 'nieuwe materialen' ontwikkeld en geeft informatie over het ontwerpen van dunne metaalplaat producten met diktes van 0,3 t/m ca. 3 mm, uitgaande van de Eindige Elementen Methode. In het kader van dit project zijn tevens uitgegeven: TI.04.18 'Hoge Sterkte Staal in dunne plaat en buis', TI.04.19 'Roestvast staal in dunne plaat en buis', TI.04.20 'Scheidingstechnieken voor dunne plaat en buis' en TI.04.21 'Aluminium in dunne plaat en buis'.
De verwerking van biomassa is vaak gericht op de omzetting in energie, wat een relatief laagwaardige vorm van benutting is. De biomaterialen, die we uit biomassa kunnen maken, zijn veel meer waard en de besparing op fossiele energie is groter. Gelet op de economisch en circulaire waarde van biomassa wordt een goede verwerking en behandeling van natte biomassa steeds belangrijker. De verwerking van deze stromen stelt echter bijzondere eisen aan de te gebruiken materialen en technieken voor ontwatering. Voor ontwatering van biomassa worden verschillende technieken gebruikt, bijvoorbeeld flocculeren, persen of centrifugeren. Bij alle deze ontwateringsprocessen worden doorgaans hulpstoffen, flocculanten, toegevoegd. Voorbeelden hiervan zijn anorganische elektrolyten, zoals aluminium- of ijzerzouten en/of organische poly-elektrolyten, waarvan de meest gebruikte is polyacrylamide. Het bouwblok van polyacrylamide, acrylamide, is in 2010 op de lijst van Zeer Zorgwekkende Stoffen (ZZS) gezet in het kader van de REACH-regelgeving. De potentiele milieu- en gezondheidsproblemen zijn een beperking voor sommige toepassingen, zoals gebruik van biomassa als grondverbeteraar of diervoeding. Polyacrylamide is moeilijk biologisch afbreekbaar. Bovendien kan het product nog resthoeveelheden bevatten van het monomeer acrylamide dat toxisch en mutageen is. Biobased kationische polymeren, zoals kationische zetmeel, geproduceerd door Glycanex en tannines zoals geleverd door Melspring kunnen een veilig en milieuvriendelijk alternatief bieden. Verder onderzoek naar deze biobased alternatieven is voor Glycanex en Melspring essentieel om duidelijk te krijgen voor welke biomassa stromen deze alternatieven het meest geschikt zijn. De geschiktheid wordt duidelijk door bepaling van de optimale formulering en deze te vergelijken met de dosering en kosten van de gebruikelijke alternatieven. Deze inzichten helpen om de doeltreffendheid van deze oplossingen te kunnen bewijzen en waar nodig, de bioflocculanten verder te ontwikkelen. Een duidelijk en onafhankelijk bewijs van de goede werking helpt de toepassing van deze alternatieven te stimuleren. Het doel van het BIOFLOC project is het in kaart brengen van de mogelijkheden en beperkingen van biobased flocculanten als alternatief voor de huidige synthetische, petrochemie gebaseerd flocculanten, zoals polyacrylamide. Op basis van de reeds door de partners uitgevoerde voorstudies en literatuuronderzoek zal een selectie van biobased flocculanten met verschillende typen biomassa’s getest worden op de ontwateringefficiëntie.
De gebouwde omgeving speelt een belangrijke rol in de Nederlandse ambities om in 2050 100 % circulair te zijn. Gebouwen gebruiken nu nog veel energie en materialen en produceren veel afval. In landelijke en gemeentelijke architectuurprijsvragen vormt circulariteit een steeds belangrijker beoordelingscriterium. Hierbij wordt circulariteit vaak gelijk gesteld aan herbruikbaarheid. Gebouwen blijven echter lang in functie (gemiddeld 50 jaar). Door aangescherpte functionele eisen is het moeilijk om veel technische bouwmaterialen (glas, baksteen, beton, staal en aluminium) één-op-één te hergebruiken. Deze materialen worden nu veelal gerecycled om de grondstoffen in de kringloop te houden. Recyclen is een slechte circulaire strategie. Als hergebruik van materialen moeilijk is dan kan een verder vertraagde kringloop van gebouwen een circulair alternatief zijn. Van gebouwen zoals grachtenpanden met lange levensduren is de kringloop praktisch tot stilstand gekomen. De milieu-impact van de toegepaste materialen die mede wordt bepaald aan de hand van de gebruiksfase, is hierdoor laag. Maar waarom weerstaan sommige gebouwen de tand des tijds, terwijl andere snel worden gesloopt? In dit onderzoek wil het consortium de architectonische (esthetische en ruimtelijke) kwaliteiten van deze lang in functie zijnde gebouwen achterhalen en onderzoeken op welke manieren deze in nieuwe gebouwen vertaald kunnen worden. Architectuur kan op deze manier een circulaire betekenis krijgen. Er kunnen gefundeerdere ontwerpbeslissingen worden genomen. In dit onderzoek staan workshops met de deelnemende architectenbureaus centraal. Hierin moeten architectonische strategieën gegenereerd worden voor gebouwen met extreem lange levensduren. Dit gebeurt aan de hand van de volgende onderzoeksvraag: Op welke wijzen kan architectuur de circulaire waarden van gebouwen en de toegepaste materialen verhogen? Naast deze architectonische strategieën zal dit onderzoek resulteren in randvoorwaarden om de functionele levensduur van gebouwen (thermische kwaliteiten gevel, flexibiliteit indeling et cetera) te verlengen. Zij zullen de basis vormen van een RAAK-MKB subsidieaanvraag die volgend jaar wordt ingediend.
"Box-achtige” sandwichproducten komen veelvuldig voor in de mobiliteits- en logistiektoepassingen o.a. vanwege hun lichte gewicht en stijfheid. Denk hierbij aan elektrische “thuisbezorg-autootjes”, lichte bestelwagens en trailers (paardentransport) en transportkisten. Deze producten bestaan in hun huidige vorm uit stijve en lichte wanden (vaak composiet sandwichpanelen) die samengesteld worden met randverstijving en brackets: veelal aluminium inkoopdelen. De verbindingstechnologie bestaat uit verlijming, boutverbindingen of klinknageltechnologie. De product is vaak een Multi-Material Solution en hierdoor moeilijk te recyclen. De toekomstige Europese wetgeving 2030 (Green Deal) dwingt de bedrijven die deze boxen anders te ontwerpen en produceren, en na te denken over “End of Life” consequenties. Hierbij is vooral de inzet van te hergebruiken of recyclen van materialen.. Voor de bedrijven betekent dit onder andere: kan ik de panelen hergebruiken ‘as is’ of moeten deze panelen omgezet worden naar een soort van grondstofvorm (bijvoorbeeld ‘flakes’), welke wederom voor een hoogwaardige toepassing kunnen worden ingezet. En welke technologieën (inclusief procesautomatisering) zijn daarvoor van toepassing. Het huidige project, een samenwerking tussen bedrijven, hogeschool en brancheorganisatie, richt zich op bovenstaande vragen. Het spitst zich vooral toe op de circulariteit van deze ‘box-achtige’ sandwichproducten en doet onderzoek naar het hergebruik of recycling van de gebruikte thermoplastische sandwichpanelen en de demontage/assemblage-technieken daarvoor. Het project start bij de classificering van het recyclaat uit sandwichpanelen en het kwalificeren van de verschillende grondstof vormen. Vervolgens wordt gekeken hoe deze materialen, al in een vroeg stadium in het ontwerpproces kunnen worden meegenomen. De verschillende materiaal verschijningsvormen zullen vervolgens via dit (her-)ontwerp in een demonstrator worden ondergebracht. Dit op basis van diverse productieprocessen, procescondities, andere randvoorwaarden. Tenslotte zal de economische haalbaarheid worden bestudeerd met aandacht voor businessmodellen rondom integratie van recycling in de bestaande productie en/of aangevuld met automatisering. Naar inschatting gaat het in West-Europese om een verbruik van circa 12,5 km2/jaar.