For further development of technologies but also for the implementation in real life contexts, it is important to understand users' perspectives on the anticipated use of innovative technologies in an early development phase. In addition, it is also important to get a better understanding of the explanation of this behavior towards technology use in later stages. Although Head Mounted Displays (HMDs) are not really new anymore, the uptake has been slow so far and people showed some extreme reactions. The objective of this study was to analyze the content of YouTube comments on videos of HMDs, in order to get a better understanding of relevant factors in this early phase of potential acceptance of HMDs. We analyzed 379 YouTube comments on HMDs using content analysis. Comments were divided into three groups: HMD, video, and miscellaneous. Comments about HMDs n=24 were further analyzed. Most of the commenters showed a positive attitude to HMDs. Within the positive attitude, the most expressed themes were comments about the type of use (gaming), positive evaluations (emotions, coolness) and perceived need for an HMD. Within the negative attitudes, negative evaluations (judgments, emotions) were showed most and negative comparisons to other products were made. In neutral attitudes, the main theme was the type of use (gaming). The results specify a couple of user needs and social norms and values which people attach in this early phase to HMDs. In this early phase of acceptance, some early adoption observations were found as in when someone talks about the type of use (felt needs) and positive judgments (social norms). Early signs of rejection were found by negative judgments (social norms) and comparisons with other products (previous practice).
DOCUMENT
Background The plantar intrinsic foot muscles (PIFMs) have a role in dynamic functions, such as balance and propulsion, which are vital to walking. These muscles atrophy in older adults and therefore this population, which is at high risk to falling, may benefit from strengthening these muscles in order to improve or retain their gait performance. Therefore, the aim was to provide insight in the evidence for the effect of interventions anticipated to improve PIFM strength on dynamic balance control and foot function during gait in adults. Methods A systematic literature search was performed in five electronic databases. The eligibility of peer-reviewed papers, published between January 1, 2010 and July 8, 2020, reporting controlled trials and pre-post interventional studies was assessed by two reviewers independently. Results from moderate- and high-quality studies were extracted for data synthesis by summarizing the standardized mean differences (SMD). The GRADE approach was used to assess the certainty of evidence. Results Screening of 9199 records resulted in the inclusion of 11 articles of which five were included for data synthesis. Included studies were mainly performed in younger populations. Low-certainty evidence revealed the beneficial effect of PIFM strengthening exercises on vertical ground reaction force (SMD: − 0.31-0.37). Very low-certainty evidence showed that PIFM strength training improved the performance on dynamic balance testing (SMD: 0.41–1.43). There was no evidence for the effect of PIFM strengthening exercises on medial longitudinal foot arch kinematics. Conclusions This review revealed at best low-certainty evidence that PIFM strengthening exercises improve foot function during gait and very low-certainty evidence for its favorable effect on dynamic balance control. There is a need for high-quality studies that aim to investigate the effect of functional PIFM strengthening exercises in large samples of older adults. The outcome measures should be related to both fall risk and the role of the PIFMs such as propulsive forces and balance during locomotion in addition to PIFM strength measures.
MULTIFILE
Buildings are responsible for approximately 40% of energy consumption and 36% of carbon dioxide (CO2) emissions in the EU, and the largest energy consumer in Europe (https://ec.europa.eu/energy). Recent research shows that more than 2/3 of all CO2 is emitted during the building process whereas less than 1/3 is emitted during use. Cement is the source of about 8% of the world's CO2 emissions and innovation to create a distributive change in building practices is urgently needed, according to Chatham House report (Lehne et al 2018). Therefore new sustainable materials must be developed to replace concrete and fossil based building materials. Lightweight biobased biocomposites are good candidates for claddings and many other non-bearing building structures. Biocarbon, also commonly known as Biochar, is a high-carbon, fine-grained solid that is produced through pyrolysis processes and currently mainly used for energy. Recently biocarbon has also gained attention for its potential value with in industrial applications such as composites (Giorcellia et al, 2018; Piri et.al, 2018). Addition of biocarbon in the biocomposites is likely to increase the UV-resistance and fire resistance of the materials and decrease hydrophilic nature of composites. Using biocarbon in polymer composites is also interesting because of its relatively low specific weight that will result to lighter composite materials. In this Building Light project the SMEs Torrgas and NPSP will collaborate with and Avans/CoE BBE in a feasibility study on the use of biocarbon in a NPSP biocomposite. The physicochemical properties and moisture absorption of the composites with biocarbon filler will be compared to the biocomposite obtained with the currently used calcium carbonate filler. These novel biocarbon-biocomposites are anticipated to have higher stability and lighter weight, hence resulting to a new, exciting building materials that will create new business opportunities for both of the SME partners.
Climate change and the depletion of resources in the world are widely recognized as the greatest societal challenges. The building sector is responsible for 40% of the raw material consumption globally. The emissions related to construction materials are anticipated to double by 2050, if no new technologies are adopted (EC, 2021). Based on the environmental cost indicator, isolation has the second largest (after concrete) impact to the environment. In Mythic - Myterials for THermal Insulation in Construction goal is to develop (in co-creation with the work field) the best available mycelium biocomposite, which can be used as a circular, biodegradable insulation material for construction in the building sector. In recent research projects partners concluded that Mycelium biocomposites have a high potential to replace traditional fossil-based isolation materials, but further research on the thermal insulation and moisture absorption is needed to convince the construction market. In the project various partners will cooperate, both from the production side of mycelium composites, as well as from the application side. Some partners originate from previous projects, but others contacted Centre of Expertise for the Biobased Economy (CoEBBE) to build further on the existing network. There are several SME’s from the Netherlands, but also from abroad (Nylausn from Iceland, Mogu Srl from Italy and Corstyrene form France), as well as Branche organizations and knowledge institutes. Avans works together with HZ in CoEBBE and for the microbiological knowledge we cooperate with the University of Utrecht. For the market research CoEBBE cooperates with the lectorate New Marketing within Avans, focussing on sustainability via biomimicry. Mycelium composites and natural products for the building industry is the theme that binds all partners.
Rotating machinery, such as centrifugal pumps, turbines, bearings, and other critical systems, is the backbone of various industrial processes. Their failures can lead to significant maintenance costs and downtime. To ensure their continuous operation, we propose a fault diagnosis and monitoring framework that leverages the innovative use of acoustic sensors for early fault detection, especially in components less accessible for traditional vibration-based monitoring strategies. The main objective of the proposed project is to develop a fault diagnosis and monitoring framework for rotating machinery, including the fusion of acoustic sensors and physics-based models. By combining real-time monitoring data from acoustic sensors with an understanding of first principles, the framework will enable maintenance practitioners to identify and categorize different failure modes such as wear, fatigue, cavitation, reduced flow, bearing damage, impeller damage, misalignment, etc. In the initial phase, the focus will be on centrifugal pumps using the existing test set-up at the University of Twente. Sorama specializes in acoustic sensors to locate noise sources and will provide acoustic cameras to capture sound patterns related to pump deterioration during various operating conditions. These acoustic signals will then be correlated with the different failure modes and mechanisms that will be described by physics-based models, such as wear, fatigue, cavitation, corrosion, etc. Furthermore, a recently published data set by the Dynamics Based Maintenance research group that includes vibration analysis data and motor current analysis data of various fault scenarios, such as mentioned above, will be used as validation. The anticipated outcome of this project is a versatile framework for a physics-informed acoustic monitoring system. This system is designed to enhance early fault detection significantly, reducing maintenance costs and downtime across a broad spectrum of industrial applications, from centrifugal pumps to turbines, bearings, and beyond.