Information and Communication Technologies (ICTs) affect the environment in various ways. Their energy consumption is growing exponentially, with and without the use of ‘green’ energy. Increasing environmental awareness within information science has led to discussions on sustainable development. ‘Green Computing’ has been introduced: the study and practice of environmentally sus- tainable computing. This can be defined as ‘designing, manufacturing, using, and disposing of com- puters, servers, and associated subsystems - such as monitors, printers, storage devices, and net- working and communications systems - efficiently and effectively with minimal or no impact on the en- vironment’. Nevertheless, the data deluge makes it not only necessary to pay attention to the hard- and software dimensions of ICTs but also to the value of the data stored. We explore the possibilities to use information and archival science to reduce the amount of stored data. In reducing this amount of stored data, it’s possible to curb unnecessary power consumption. The objectives of this paper are to develop a model (and test its viablility) to [1] increase awareness in organizations for the environ- mental aspects of data storage, [2] reduce the amount of stored data, and [3] reduce power consump- tion for data storage. This model integrates the theories of Green Computing, Information Value Chain (IVC) and Archival Retention Levels (ARLs). We call this combination ‘Green Archiving’. Our explora- tory research was a combination of desk research, qualitative interviews with information technology and information management experts, a focus group, and two exploratory case studies. This paper is the result of the first stage of a research project that is aimed at developing low power ICTs that will automatically appraise, select, preserve or permanently delete data based on their value. Such an ICT will automatically reduce storage capacity and curb power consumption used for data storage. At the same time, data disposal will reduce overload caused by storing the same data in different for- mats, it will lower costs and it reduces the potential for liability.
DOCUMENT
Computers create environmental problems. Their production requires electricity, raw materials, chemical materials and large amounts of water, and supplies (often toxic) waste. They poison dumping sites and pollute groundwater. In addition, the energy consumption in IT is growing exponentially, with and without the use of ‘green’ energy. Increasing environmental awareness within information science has led to discussions on sustainable development. ‘Green Computing’ has been introduced: the study and practice of environmentally sustainable computing or IT. It is necessary to pay attention to the value of the information stored. In this paper, we explored the possibilities of combining Green Computing components with two theories of archival science (Archival Retention Levels and Information Value Chain respectively) to curb unnecessary power consumption. Because in 2012 storage networks were responsible for almost 30 % of total IT energy costs, reducing the amount of stored information by the disposal of unneeded information should have a direct effect on IT energy use. Based on a theoretical analysis and qualitative interviews with an expert group, we developed a ‘Green Archiving’ model, that could be used by organizations to 1] reduce the amount of stored information, and 2] reduce IT power consumption. We used two exploratory case studies to research the viability of this model.
MULTIFILE
In summer 2020, part of a quay wall in Amsterdam collapsed, and in 2010, construction for a parking lot in Amsterdam was hindered by old sewage lines. New sustainable electric systems are being built on top of the foundations of old windmills, in places where industry thrived in the 19th century. All these examples have one point in common: They involve largely unknown and invisible historic underground structures in a densely built historic city. We argue that truly circular building practices in old cities require smart interfaces that allow the circular use of data from the past when planning the future. The continuous use and reuse of the same plots of land stands in stark contrast with the discontinuity and dispersed nature of project-oriented information. Construction and data technology improves, but information about the past is incomplete. We have to break through the lack of historic continuity of data to make building practices truly circular. Future-oriented construction in Amsterdam requires historic knowledge and continuous documentation of interventions and findings over time. A web portal will bring together a range of diverse public and private, professional and citizen stakeholders, each with their own interests and needs. Two creative industry stakeholders, Yume interactive (Yume) and publisher NAI010, come together to work with a major engineering office (Witteveen+Bos), the AMS Institute, the office of Engineering of the Municipality of Amsterdam, UNESCO NL and two faculties of Delft University of Technology (Architecture and Computer Science) to inventorize historic datasets on the Amsterdam underground. The team will connect all the relevant stakeholders to develop a pilot methodology and a web portal connecting historic data sets for use in contemporary and future design. A book publication will document the process and outcomes, highlighting the need for circular practices that tie past, present and future.