Service of SURF
© 2025 SURF
PURPOSE: The patients diagnosed with Ehlers-Danlos Syndrome Hypermobility Type (EDS-HT) are characterized by pain, proprioceptive inacuity, muscle weakness, potentially leading to activity limitations. In EDS-HT, a direct relationship between muscle strength, proprioception and activity limitations has never been studied. The objective of the study was to establish the association between muscle strength and activity limitations and the impact of proprioception on this association in EDS-HT patients.METHODS: Twenty-four EDS-HT patients were compared with 24 controls. Activity limitations were quantified by Health Assessment Questionnaire (HAQ), Six-Minute Walk test (6MWT) and 30-s chair-rise test (30CRT). Muscle strength was quantified by handheld dynamometry. Proprioception was quantified by movement detection paradigm. In analyses, the association between muscle strength and activity limitations was controlled for proprioception and confounders.RESULTS: Muscle strength was associated with 30CRT (r = 0.67, p = <0.001), 6MWT (r = 0.58, p = <0.001) and HAQ (r = 0.63, p= <0.001). Proprioception was associated with 30CRT (r = 0.55, p < 0.001), 6MWT (r = 0.40, p = <0.05) and HAQ (r = 0.46, p < 0.05). Muscle strength was found to be associated with activity limitations, however, proprioceptive inacuity confounded this association.CONCLUSIONS: Muscle strength is associated with activity limitations in EDS-HT patients. Joint proprioception is of influence on this association and should be considered in the development of new treatment strategies for patients with EDS-HT. Implications for rehabilitation Reducing activity limitations by enhancing muscle strength is frequently applied in the treatment of EDS-HT patients. Although evidence regarding treatment efficacy is scarce, the current paper confirms the rationality that muscle strength is an important factor in the occurrence of activity limitations in EDS-HT patients. Although muscle strength is the most dominant factor that is associated with activity limitations, this association is confounded by proprioception. In contrast to common belief proprioception was not directly associated with activity limitations but confounded this association. Controlling muscle strength on the bases of proprioceptive input may be more important for reducing activity limitations than just enhancing sheer muscle strength.
ObjectivesTo investigate cartilage tissue turnover in response to a supervised 12-week exercise-related joint loading training program followed by a 6-month period of unsupervised training in patients with knee osteoarthritis (OA). To study the difference in cartilage tissue turnover between high- and low-resistance training.MethodPatients with knee OA were randomized into either high-intensity or low-intensity resistance supervised training (two sessions per week) for 3 months and unsupervised training for 6 months. Blood samples were collected before and after the supervised training period and after the follow-up period. Biomarkers huARGS, C2M, and PRO-C2, quantifying cartilage tissue turnover, were measured by ELISA. Changes in biomarker levels over time within and between groups were analyzed using linear mixed models with baseline values as covariates.ResultshuARGS and C2M levels increased after training and at follow-up in both low- and high-intensity exercise groups. No changes were found in PRO-C2. The huARGS level in the high-intensity resistance training group increased significantly compared to the low-intensity resistance training group after resistance training (p = 0.029) and at follow-up (p = 0.003).ConclusionCartilage tissue turnover and cartilage degradation appear to increase in response to a 3-month exercise-related joint loading training program and at 6-month follow-up, with no evident difference in type II collagen formation. Aggrecan remodeling increased more with high-intensity resistance training than with low-intensity exercise.These exploratory biomarker results, indicating more cartilage degeneration in the high-intensity group, in combination with no clinical outcome differences of the VIDEX study, may argue against high-intensity training.
ObjectivesOsteoarthritis (OA) of the foot-ankle complex is understudied. Understanding determinants of pain and activity limitations is necessary to improve management of foot OA. The aim of the present study was to investigate demographic, foot-specific and comorbidity-related factors associated with pain and activity limitations in patients with foot OA.MethodsThis exploratory cross-sectional study included 75 patients with OA of the foot and/or ankle joints. Demographic and clinical data were collected with questionnaires and by clinical examination. The outcome variables of pain and activity limitations were measured using the Foot Function Index (FFI). Potential determinants were categorized into demographic factors (e.g., age, sex), foot-specific factors (e.g., plantar pressure and gait parameters), and comorbidity-related factors (e.g., type and amount of comorbid diseases). Multivariable regression analyses with backward selection (p-out≥0.05) were performed in two steps, leading to a final model.ResultsOf all potential determinants, nine factors were selected in the first step. Five of these factors were retained in the second step (final model): female sex, pain located in the hindfoot, higher body mass index (BMI), neurological comorbidity, and Hospital Anxiety and Depression Scale (HADS) score were positively associated with the FFI score. The explained variance (R2) for the final model was 0.580 (adjusted R2 = 0.549).ConclusionFemale sex, pain located in the hindfoot, higher BMI, neurological comorbidity and greater psychological distress were independently associated with a higher level of foot-related pain and activity limitations. By addressing these factors in the management of foot OA, pain and activity limitations may be reduced.