We developed an application which allows learners to construct qualitative representations of dynamic systems to aid them in learning subject content knowledge and system thinking skills simultaneously. Within this application, we implemented a lightweight support function which automatically generates help from a norm-representation to aid learners as they construct these qualitative representations. This support can be expected to improve learning. Using this function it is not necessary to define in advance possible errors that learners may make and the subsequent feedback. Also, no data from (previous) learners is required. Such a lightweight support function is ideal for situations where lessons are designed for a wide variety of topics for small groups of learners. Here, we report on the use and impact of this support function in two lessons: Star Formation and Neolithic Age. A total of 63 ninth-grade learners from secondary school participated. The study used a pretest/intervention/post-test design with two conditions (no support vs. support) for both lessons. Learners with access to the support create better representations, learn more subject content knowledge, and improve their system thinking skills. Learners use the support throughout the lessons, more often than they would use support from the teacher. We also found no evidence for misuse, i.e., 'gaming the system', of the support function.
DOCUMENT
The Heating Ventilation and Air Conditioning (HVAC) sector is responsible for a large part of the total worldwide energy consumption, a significant part of which is caused by incorrect operation of controls and maintenance. HVAC systems are becoming increasingly complex, especially due to multi-commodity energy sources, and as a result, the chance of failures in systems and controls will increase. Therefore, systems that diagnose energy performance are of paramount importance. However, despite much research on Fault Detection and Diagnosis (FDD) methods for HVAC systems, they are rarely applied. One major reason is that proposed methods are different from the approaches taken by HVAC designers who employ process and instrumentation diagrams (P&IDs). This led to the following main research question: Which FDD architecture is suitable for HVAC systems in general to support the set up and implementation of FDD methods, including energy performance diagnosis? First, an energy performance FDD architecture based on information embedded in P&IDs was elaborated. The new FDD method, called the 4S3F method, combines systems theory with data analysis. In the 4S3F method, the detection and diagnosis phases are separated. The symptoms and faults are classified into 4 types of symptoms (deviations from balance equations, operating states (OS) and energy performance (EP), and additional information) and 3 types of faults (component, control and model faults). Second, the 4S3F method has been tested in four case studies. In the first case study, the symptom detection part was tested using historical Building Management System (BMS) data for a whole year: the combined heat and power plant of the THUAS (The Hague University of Applied Sciences) building in Delft, including an aquifer thermal energy storage (ATES) system, a heat pump, a gas boiler and hot and cold water hydronic systems. This case study showed that balance, EP and OS symptoms can be extracted from the P&ID and the presence of symptoms detected. In the second case study, a proof of principle of the fault diagnosis part of the 4S3F method was successfully performed on the same HVAC system extracting possible component and control faults from the P&ID. A Bayesian Network diagnostic, which mimics the way of diagnosis by HVAC engineers, was applied to identify the probability of all possible faults by interpreting the symptoms. The diagnostic Bayesian network (DBN) was set up in accordance with the P&ID, i.e., with the same structure. Energy savings from fault corrections were estimated to be up to 25% of the primary energy consumption, while the HVAC system was initially considered to have an excellent performance. In the third case study, a demand-driven ventilation system (DCV) was analysed. The analysis showed that the 4S3F method works also to identify faults on an air ventilation system.
DOCUMENT
This research investigates the potential and challenges of using artificial intelligence, specifically the ChatGPT-4 model developed by OpenAI, in grading and providing feedback in an educational setting. By comparing the grading of a human lecturer and ChatGPT-4 in an experiment with 105 students, our study found a strong positive correlation between the scores given by both, despite some mismatches. In addition, we observed that ChatGPT-4's feedback was effectively personalized and understandable for students, contributing to their learning experience. While our findings suggest that AI technologies like ChatGPT-4 can significantly speed up the grading process and enhance feedback provision, the implementation of these systems should be thoughtfully considered. With further research and development, AI can potentially become a valuable tool to support teaching and learning in education. https://saiconference.com/FICC
DOCUMENT
This study explores how households interact with smart systems for energy usage, providing insights into the field's trends, themes and evolution through a bibliometric analysis of 547 relevant literature from 2015 to 2025. Our findings discover: (1) Research activity has grown over the past decade, with leading journals recognizing several productive authors. Increased collaboration and interdisciplinary work are expected to expand; (2) Key research hotspots, identified through keyword co-occurrence, with two (exploration and development) stages, highlighting the interplay between technological, economic, environmental, and behavioral factors within the field; (3) Future research should place greater emphasis on understanding how emerging technologies interact with human, with a deeper understanding of users. Beyond the individual perspective, social dimensions also demand investigation. Finally, research should also aim to support policy development. To conclude, this study contributes to a broader perspective of this topic and highlights directions for future research development.
MULTIFILE
Purpose – In the domain of healthcare, both process efficiency and the quality of care can be improved through the use of dedicated pervasive technologies. Among these applications are so-called real-time location systems (RTLS). Such systems are designed to determine and monitor the location of assets and people in real time through the use of wireless sensor networks. Numerous commercially available RTLS are used in hospital settings. The nursing home is a relatively unexplored context for the application of RTLS and offers opportunities and challenges for future applications. The paper aims to discuss these issues. Design/methodology/approach – This paper sets out to provide an overview of general applications and technologies of RTLS. Thereafter, it describes the specific healthcare applications of RTLS, including asset tracking, patient tracking and personnel tracking. These overviews are followed by a forecast of the implementation of RTLS in nursing homes in terms of opportunities and challenges. Findings – By comparing the nursing home to the hospital, the RTLS applications for the nursing home context that are most promising are asset tracking of expensive goods owned by the nursing home in orderto facilitate workflow and maximise financial resources, and asset tracking of personal belongings that may get lost due to dementia. Originality/value – This paper is the first to provide an overview of potential application of RTLS technologies for nursing homes. The paper described a number of potential problem areas that can be addressed by RTLS. Published by Emerald Publishing Limited Original article: https://doi.org/10.1108/JET-11-2017-0046 For this paper Joost van Hoof received the Highly Recommended Award from Emerald Publishing Ltd. in October 2019: https://www.emeraldgrouppublishing.com/authors/literati/awards.htm?year=2019
MULTIFILE
From the article: Manufacturing technology can improve the turnover of a company if it enables fast market introduction for volume production. Reconfigurable equipment is developed to meet the growing demand for more agile production. Modular reconfiguration, defined as changing the structure of the machine, enables larger variation of products on a single manufacturing system; these solutions are called Reconfigurable Manufacturing Systems (RMS). The quality of RMS, and the required resources to bring it to reliable production, is largely determined by a swift execution of the reconfiguration process. This paper proposes a method to compare alternatives for the ways to implement reconfiguration. Three classes of reconfiguration are defined to distinguish the impact of the proposed alternatives. The procedure uses a recently introduced index method for development of RMS process modules. This index method is based on the Axiomatic Design theory. Weighing factors are used to calculate the resources and lead time needed to implement the reconfiguration process. Application of the method leads to quick comparison of alternatives in the early stage of development. Successful execution of the method was demonstrated for the manufacturing process of a 3D measuring probe.
MULTIFILE
Clinical decision support systems (CDSSs) have gained prominence in health care, aiding professionals in decision-making and improving patient outcomes. While physicians often use CDSSs for diagnosis and treatment optimization, nurses rely on these systems for tasks such as patient monitoring, prioritization, and care planning. In nursing practice, CDSSs can assist with timely detection of clinical deterioration, support infection control, and streamline care documentation. Despite their potential, the adoption and use of CDSSs by nurses face diverse challenges. Barriers such as alarm fatigue, limited usability, lack of integration with workflows, and insufficient training continue to undermine effective implementation. In contrast to the relatively extensive body of research on CDSS use by physicians, studies focusing on nurses remain limited, leaving a gap in understanding the unique facilitators and barriers they encounter. This study aimed to explore the facilitators and barriers influencing the adoption and use of CDSSs by nurses in hospitals, using an extended Fit Between Individuals, Tasks, and Technology (FITT) framework.
MULTIFILE
Social media platforms such as Facebook, YouTube, and Twitter have millions of users logging in every day, using these platforms for commu nication, entertainment, and news consumption. These platforms adopt rules that determine how users communicate and thereby limit and shape public discourse.2 Platforms need to deal with large amounts of data generated every day. For example, as of October 2021, 4.55 billion social media users were ac tive on an average number of 6.7 platforms used each month per internet user.3 As a result, platforms were compelled to develop governance models and content moderation systems to deal with harmful and undesirable content, including disinformation. In this study: • ‘Content governance’ is defined as a set of processes, procedures, and systems that determine how a given platform plans, publishes, moder ates, and curates content. • ‘Content moderation’ is the organised practice of a social media plat form of pre-screening, removing, or labelling undesirable content to reduce the damage that inappropriate content can cause.
MULTIFILE
When using autonomous reconfigurable manufacturing system, that offers generic services, there is the possibility to dynamically manufacture a range of products using the same manufacturing equipment. Opportunities are created to optimally scale the production using reconfiguration means and automatically manufacture small amounts of unique or highly customizable products. Basically the result is a short time to market for new products. This paper discusses the problems that arise when manufacturing systems are reconfigured and the impact of this action on the entire system. The proposed software architecture and tooling makes it possible to quickly reconfigure a system without interference to other system, and shows how the reconfigured hardware can be controlled without the need to reprogram the software. Parameters that are required to control the new hardware can be added using a simple tool. As a result reconfiguration is simplified and can be achieved quickly by mechanics without reprogramming any systems. The impact is that time to market can be reduced and manufacturing systems can quickly be adapted to current real-time needs.
DOCUMENT
We developed a lesson where students construct a qualitative representation to learn how clock genes are regulated. Qualitative representations provide a non-numerical description of system behavior, focusing on causal relation-ships and system states. They align with human reasoning about system dy-namics and serve as valuable learning tools for understanding both domain-specific systems and developing broader systems thinking skills.The lesson, designed for upper secondary and higher education, is imple-mented in the DynaLearn software at Level 4, where students can model feedback loops. Students construct the representation step by step, guided by a structured workbook and built-in support functions within the software. At each step, they run simulations to examine system behavior and reflect on the results through workbook questions. To ensure scientific accuracy, the representation and workbook were evaluated by domain experts.The lesson begins with modeling how increasing BMAL:CLOCK activity enhances the transcription of PER and CRY genes through binding to the E-box. Next, students explore how mRNA production and degradation—two opposing processes—regulate mRNA levels. This is followed by modeling translation at the ribosomes, where PER and CRY proteins are synthesized and subsequently degraded, again illustrating competing regulatory process-es. Students then model how PER and CRY proteins form a complex that translocates to the nucleus, inhibiting CLOCK:BMAL binding and establish-ing a negative feedback loop. Finally, they extend their understanding by ex-ploring how CLOCK:BMAL also regulates the AVP gene, linking clock genes to broader physiological processes.
MULTIFILE