Background and purpose: Automatic approaches are widely implemented to automate dose optimization in radiotherapy treatment planning. This study systematically investigates how to configure automatic planning in order to create the best possible plans. Materials and methods: Automatic plans were generated using protocol based automatic iterative optimization. Starting from a simple automation protocol which consisted of the constraints for targets and organs at risk (OAR), the performance of the automatic approach was evaluated in terms of target coverage, OAR sparing, conformity, beam complexity, and plan quality. More complex protocols were systematically explored to improve the quality of the automatic plans. The protocols could be improved by adding a dose goal on the outer 2 mm of the PTV, by setting goals on strategically chosen subparts of OARs, by adding goals for conformity, and by limiting the leaf motion. For prostate plans, development of an automated post-optimization procedure was required to achieve precise control over the dose distribution. Automatic and manually optimized plans were compared for 20 head and neck (H&N), 20 prostate, and 20 rectum cancer patients. Results: Based on simple automation protocols, the automatic optimizer was not always able to generate adequate treatment plans. For the improved final configurations for the three sites, the dose was lower in automatic plans compared to the manual plans in 12 out of 13 considered OARs. In blind tests, the automatic plans were preferred in 80% of cases. Conclusions: With adequate, advanced, protocols the automatic planning approach is able to create high-quality treatment plans.
DOCUMENT
Many countries signed the Paris Agreement in order to mitigate global average temperature rise. In this context, Dutch authorities also decided to realize a maximum of 35% residual waste by 2020 for its own operations. So, 65% of the total waste should be recyclable or re-usable and only a maximum of 35% should be not. This current paper explores how changes in automatic behaviours, facilityoperations and related practice-oriented research can contribute to this aim of the authorities.
LINK
Background: Manual muscle mass assessment based on Computed Tomography (CT) scans is recognized as a good marker for malnutrition, sarcopenia, and adverse outcomes. However, manual muscle mass analysis is cumbersome and time consuming. An accurate fully automated method is needed. In this study, we evaluate if manual psoas annotation can be substituted by a fully automatic deep learning-based method.Methods: This study included a cohort of 583 patients with severe aortic valve stenosis planned to undergo Transcatheter Aortic Valve Replacement (TAVR). Psoas muscle area was annotated manually on the CT scan at the height of lumbar vertebra 3 (L3). The deep learning-based method mimics this approach by first determining the L3 level and subsequently segmenting the psoas at that level. The fully automatic approach was evaluated as well as segmentation and slice selection, using average bias 95% limits of agreement, Intraclass Correlation Coefficient (ICC) and within-subject Coefficient of Variation (CV). To evaluate performance of the slice selection visual inspection was performed. To evaluate segmentation Dice index was computed between the manual and automatic segmentations (0 = no overlap, 1 = perfect overlap).Results: Included patients had a mean age of 81 ± 6 and 45% was female. The fully automatic method showed a bias and limits of agreement of -0.69 [-6.60 to 5.23] cm2, an ICC of 0.78 [95% CI: 0.74-0.82] and a within-subject CV of 11.2% [95% CI: 10.2-12.2]. For slice selection, 84% of the selections were on the same vertebra between methods, bias and limits of agreement was 3.4 [-24.5 to 31.4] mm. The Dice index for segmentation was 0.93 ± 0.04, bias and limits of agreement was -0.55 [1.71-2.80] cm2.Conclusion: Fully automatic assessment of psoas muscle area demonstrates accurate performance at the L3 level in CT images. It is a reliable tool that offers great opportunities for analysis in large scale studies and in clinical applications.
DOCUMENT
Researching the enormous VINEX city expansion operations of 1995-2005. The research 'VINEXt' was launched in 2010 in response to an Open Call by the (then) Netherlands Architecture Fund. In VINEXt, we investigate the future-proofing of Vinex districts on a national scale. Using a number of future scenarios, four sample neighbourhoods are being studied to see where opportunities for development in the next 30 years lie or where threats may arise. The knowledge gained will be used to describe building blocks for the transformation of VINEX districts in general.Societal Issue: Times change and so do the inhabitants of modern suburbs. But these neighbourhoods can not automatically absorb these changes - how to stay functional and attractive in a uncertain future?Benefit to society: Working with scenarios provides insight in possible future demands and opportunities, and the extent to which the built environment of the Vinex areas can move with the tides of time.