The two-dimensional vehicle routing problem (2L-VRP) is a realistic extension of the classical vehicle routing problem where customers’ demands are composed by sets of non-stackable items. Examples of such problems can be found in many real-life applications, e.g. furniture or industrial machinery transportation. Often, these real-life instances have to deal with uncertainty in many aspects of the problem, such as variable traveling times due to traffic conditions or customers availability. We present a hybrid simheuristic algorithm that combines biased-randomized routing and packing heuristics within a multi-start framework. Monte Carlo simulation is used to deal with uncertainty at different stages of the search process. With the goal of minimizing total expected cost, we use this methodology to solve a set of stochastic instances of the 2L-VRP with unrestricted oriented loading. Our results show that accounting for systems variability during the algorithm search yields more robust solutions with lower expected costs.
Artificial intelligence (AI) integration in Unmanned Aerial Vehicle (UAV) operations has significantly advanced the field through increased autonomy. However, evaluating the critical aspects of these operations remains a challenge. In order to address this, the current study proposes the use of a combination of the 'Observe-Orient-Decide-Act (OODA)' loop and the 'Analytic Hierarchy Process (AHP)' method for evaluating AI-UAV systems. The integration of the OODA loop into AHP aims to assess and weigh the critical components of AI-UAV operations, including (i) perception, (ii) decision-making, and (iii) adaptation. The research compares the results of the AHP evaluation between different groups of UAV operators. The findings of this research identify areas for improvement in AI-UAV systems and guide the development of new technologies. In conclusion, this combined approach offers a comprehensive evaluation method for the current and future state of AI-UAV operations, focusing on operator group comparison.
The aim of this research/project is to investigate and analyze the opportunities and challenges of implementing AI technologies in general and in the transport and logistics sectors. Also, the potential impacts of AI at sectoral, regional, and societal scales that can be identified and chan- neled, in the field of transport and logistics sectors, are investigated. Special attention will be given to the importance and significance of AI adoption in the development of sustainable transport and logistics activities using intelligent and autonomous transport and cleaner transport modalities. The emphasis here is therefore on the pursuit of ‘zero emissions’ in transport and logistics at the urban/city and regional levels.Another goal of this study is to examine a new path for follow-up research topics related to the economic and societal impacts of AI technology and the adoption of AI systems at organizational and sectoral levels.This report is based on an exploratory/descriptive analysis and focuses mainly on the examination of existing literature and (empirical) scientific research publica- tions, previous and ongoing AI initiatives and projects (use cases), policy documents, etc., especially in the fields of transport and logistics in the Netherlands. It presents and discusses many aspects of existing challenges and opportunities that face organizations, activities, and individuals when adopting AI technology and systems.
The demand for mobile agents in industrial environments to perform various tasks is growing tremendously in recent years. However, changing environments, security considerations and robustness against failure are major persistent challenges autonomous agents have to face when operating alongside other mobile agents. Currently, such problems remain largely unsolved. Collaborative multi-platform Cyber- Physical-Systems (CPSs) in which different agents flexibly contribute with their relative equipment and capabilities forming a symbiotic network solving multiple objectives simultaneously are highly desirable. Our proposed SMART-AGENTS platform will enable flexibility and modularity providing multi-objective solutions, demonstrated in two industrial domains: logistics (cycle-counting in warehouses) and agriculture (pest and disease identification in greenhouses). Aerial vehicles are limited in their computational power due to weight limitations but offer large mobility to provide access to otherwise unreachable places and an “eagle eye” to inform about terrain, obstacles by taking pictures and videos. Specialized autonomous agents carrying optical sensors will enable disease classification and product recognition improving green- and warehouse productivity. Newly developed micro-electromechanical systems (MEMS) sensor arrays will create 3D flow-based images of surroundings even in dark and hazy conditions contributing to the multi-sensor system, including cameras, wireless signatures and magnetic field information shared among the symbiotic fleet. Integration of mobile systems, such as smart phones, which are not explicitly controlled, will provide valuable information about human as well as equipment movement in the environment by generating data from relative positioning sensors, such as wireless and magnetic signatures. Newly developed algorithms will enable robust autonomous navigation and control of the fleet in dynamic environments incorporating the multi-sensor data generated by the variety of mobile actors. The proposed SMART-AGENTS platform will use real-time 5G communication and edge computing providing new organizational structures to cope with scalability and integration of multiple devices/agents. It will enable a symbiosis of the complementary CPSs using a combination of equipment yielding efficiency and versatility of operation.