Accurate modeling of end-users’ decision-making behavior is crucial for validating demand response (DR) policies. However, existing models usually represent the decision-making behavior as an optimization problem, neglecting the impact of human psychology on decisions. In this paper, we propose a Belief-Desire-Intention (BDI) agent model to model end-users’ decision-making under DR. This model has the ability to perceive environmental information, generate different power scheduling plans, and make decisions that align with its own interests. The key modeling capabilities of the proposed model have been validated in a household end-user with flexible loads
DOCUMENT
Agent-based modeling (ABM) is a widely used method for evaluating demand response (DR) strategies. To comprehensively assess the impact of DR strategies on a district cooling system, the integration of building managers’ DR behavior is essential. However, most ABM studies focus on technical optimization while overlooking the behavioral factors that may exist in building managers’ decision-making processes. To address this gap, this paper introduces an agent-based model using the belief-desire-intention (BDI) framework to simulate building managers’ air-conditioning setpoint adjustment behavior under DR, integrating the reasoning capabilities and irrational behavior factors.
MULTIFILE
Artificially intelligent agents increasingly collaborate with humans in human-agent teams. Timely proactive sharing of relevant information within the team contributes to the overall team performance. This paper presents a machine learning approach to proactive communication in AI-agents using contextual factors. Proactive communication was learned in two consecutive experimental steps: (a) multi-agent team simulations to learn effective communicative behaviors, and (b) human-agent team experiments to refine communication suitable for a human team member. Results consist of proactive communication policies for communicating both beliefs and goals within human-agent teams. Agents learned to use minimal communication to improve team performance in simulation, while they learned more specific socially desirable behaviors in the human-agent team experiment
DOCUMENT
This papers presents some ideas to use so-called software agents as a software representation of a product not only during manufacturing but also during the whole life cycle of the product. Software agents are autonomous entities capable of collecting useful information about products. By their design and capabilities software agents fit well in the concept of ubiquitous computing. We use these agents in our newly developed manufacturing process. This paper discusses further use of agent technology.
DOCUMENT
Author supplied: Abstract—The growing importance and impact of new technologies are changing many industries. This effect is especially noticeable in the manufacturing industry. This paper explores a practical implementation of a hybrid architecture for the newest generation of manufacturing systems. The papers starts with a proposition that envisions reconfigurable systems that work together autonomously to create Manufacturing as a Service (MaaS). It introduces a number of problems in this area and shows the requirements for an architecture that can be the main research platform to solve a number of these problems, including the need for safe and flexible system behaviour and the ability to reconfigure with limited interference to other systems within the manufacturing environment. The paper highlights the infrastructure and architecture itself that can support the requirements to solve the mentioned problems in the future. A concept system named Grid Manufacturing is then introduced that shows both the hardware and software systems to handle the challenges. The paper then moves towards the design of the architecture and introduces all systems involved, including the specific hardware platforms that will be controlled by the software platform called REXOS (Reconfigurable EQuipletS Operating System). The design choices are provided that show why it has become a hybrid platform that uses Java Agent Development Framework (JADE) and Robot Operating System (ROS). Finally, to validate REXOS, the performance is measured and discussed, which shows that REXOS can be used as a practical basis for more specific research for robust autonomous reconfigurable systems and application in industry 4.0. This paper shows practical examples of how to successfully combine several technologies that are meant to lead to a faster adoption and a better business case for autonomous and reconfigurable systems in industry.
DOCUMENT
This paper describes a concept where products are equipped with agents that will assist in recycling and repairing the product. These so-called product agents represent the product in cyberspace and are capable to negotiate with other products in case of recycling or repair. Some product agents of broken products will offer spare parts, other agents will look for spare parts to repair a broken product. On the average this will enlarge the lifetime of a product and in some cases prevent wasting resources. Apart from reuse of spare parts these agents will also help to locate rare elements in a device, so these elements can be recycled more easily.
DOCUMENT
Elke periode kent zijn eigen revolutie en elke revolutie brengt zijn eigen organisatorische model met zich mee. We bevinden ons nu in de 4e industri¨ele revolutie, waar het internet van dingen ons verbindt met autonome embedded systemen. Deze systemen zijn actief in de virtuele ’cyber’ wereld, alsook in de echte ’fysieke’ wereld om ons heen. Deze zogenoemde ’Cyber-Fysieke’ Systemen volgen daarmee een modern organisatorisch model, namelijk zelfmanagement, en zijn dan ook in staat zelf proactieve acties te ondernemen. Dit proefschrift belicht productiesystemen vanuit het Cyber-Fysieke perspectief. De productiesystemen zijn hier herconfigureerbaar, autonoom en zeer flexibel. Dit kan enkel worden bereikt door het ontwikkelen van nieuwe methodes en het toepassen van nieuwe technologie¨en die flexibiliteit verder bevorderen. Echter, effici¨entie is ook van belang, bijvoorbeeld door productassemblage zo flexibel te maken dat het daardoor kosteneffici¨ent is om de productie van diverse producten met een lage oplage, zogenaamde high-mix, low volume producten, te automatiseren. De mogelijkheid om zo flexibel te kunnen produceren moet bereikt worden door de creatie van nieuwe methoden en middelen, waarbij nieuwe technologie¨en worden gecombineerd; een belangrijk aspect hierbij is dat dit toepasbaar getest moet worden door gebruik van simulatoren en speciaal hiervoor ontwikkelde productiesystemen. Dit onderzoek zal beginnen met het introduceren van het concept achter de bijbehorende productiemethodologie, welke Grid Manufacturing is genoemd. Grid Manufacturing wordt uitgevoerd door autonome entiteiten (agenten) die zowel de productiesystemen zelf, als de producten representeren. Producten leven dan al in de virtuele cyber wereld voordat zij daadwerkelijk zijn gebouwd, en zijn zich bewust uit welke onderdelen zij gemaakt moeten worden. De producten communiceren en overleggen met de autonome herconfigureerbare productiesystemen, de zogenaamde equiplets. Deze equiplets leveren generieke diensten aan een grote diversiteit aan producten, die hierdoor op elk moment geproduceerd kunnen worden. Het onderzoek focust hierbij specifiek op de equiplets en de technische uitdagingen om dynamisch geautomatiseerde productie mogelijk te maken. Om Grid Manufacturing mogelijk te maken is er een set van technologische uitdagingen onderzocht. De achtergrond, onderzoeksaanpak en concepten zijn dan ook de eerste drie inleidende hoofdstukken. Daarna begint het onderzoek met Hoofdstuk 4 Object Awareness. Dit hoofdstuk beschrijft een dynamische manier waarop informatie uit verschillende autonome systemen gecombineerd wordt om objecten te herkennen, lokaliseren en daarmee te kunnen manipuleren. Hoofdstuk 5 Herconfiguratie beschrijft hoe producten communiceren met de equiplets en welke achterliggende systemen ervoor zorgen dat, ondanks | Dutch Summary 232 dat het product niet bekend is met de hardware van de equiplet, deze toch in staat is acties uit te voeren. Tevens beschrijft het hoofdstuk hoe de equiplets omgaan met verschillende hardwareconfiguraties en ondanks de aanpassingen zichzelf toch kunnen besturen. De equiplet kan dan ook aangepast worden zonder dat deze opnieuw geprogrammeerd hoeft te worden. In Hoofdstuk 6 Architectuur wordt vervolgens dieper ingegaan op de bovenliggende architectuur van de equiplets. Hier worden prestaties gecombineerd met flexibiliteit, waarvoor een hybride architectuur is ontwikkeld die het grid van equiplets controleert door het gebruik van twee platformen: Multi-Agent System (MAS) en Robot Operating System (ROS). Nadat de architectuur is vastgesteld, wordt er in Hoofdstuk 7 onderzocht hoe deze veilig ingezet kan worden. Hierbij wordt een controlesysteem ingevoerd dat het systeemgedrag bepaalt, waarmee het gedrag van de equiplets transparant wordt gemaakt. Tevens zal een simulatie met input van de sensoren uit de fysieke wereld ’live’ controleren of alle bewegingen veilig uitgevoerd kunnen worden. Nadat de basisfunctionaliteit van het Grid nu compleet is, wordt in Hoofdstuk 8 Validatie en Utilisatie gekeken naar hoe Grid Manufacturing gebruikt kan worden en welke nieuwe mogelijkheden deze kan opleveren. Zo wordt er besproken hoe zowel een hi¨erarchische als een heterarchische aanpak, waar alle systemen gelijk zijn, gebruikt kan worden. Daarnaast laat het hoofdstuk o.a. aan de hand van enkele voorbeelden en simulaties zien welke effecten herconfiguratie kan hebben, en welke voordelen deze aanpak zoal kan bieden.. Het proefschrift laat zien hoe met technische middelen geautomatiseerde flexibiliteit mogelijk wordt gemaakt. Hoewel het gehele concept nog volwassen zal moeten worden, worden er enkele aspecten getoond die op de korte termijn toepasbaar zijn in de industrie. Enkele voorbeelden hiervan zijn: (1) het combineren van gegevens uit diverse (autonome) bronnen voor 6D-lokalisatie; (2) een data-gedreven systeem, de zogeheten hardware-abstractielaag, die herconfigureerbare systemen controleert en de mogelijkheid biedt om deze productiesystemen aan te passen zonder deze te hoeven herprogrammeren; en (3) het gebruik van Cyber-Fysieke systemen om de veiligheid te verhogen.
MULTIFILE
Author supplied: The production system described in this paper in an implementation of an agile agent-based production system. This system is designed to meet the requirements of modern production, where short time to market, requirementdriven production and low cost small quantity production are important issues. The production is done on special devices called equiplets. A grid of these equiplets connected by a fast network is capable of producing a variety of different products in parallel. The multi-agent-based software infrastructure is responsible for the agile manufacturing. A product agent is responsible for the production of a single product and equiplet agents will perform the production steps to assemble the product. This paper describes this multiagent-based production system with the focus on the product agent. Presented at EUMAS 2013 ( 11th European Workshop on Multi-Agent Systems) , At Toulouse.
DOCUMENT
Dit essay geeft een systeemvisie op het ontwikkelen van embedded software voor slimme systemen: (mobiele) robots en sensornetwerken.
DOCUMENT
Dit eindrapport behandelt het onderzoek van CDM@Airports, gericht op Collaborative Decision Making in de logistieke processen van luchtvrachtafhandeling op Nederlandse luchthavens. Dit project, met een looptijd van ruim twee jaar, is gestart op 8 november 2021 en geëindigd op 31 december 2023. HET PROJECT CDM@AIRPORTS OMVAT DRIE WERKPAKKETTEN: 1. Projectmanagement, dit betreft de algehele aansturing van het project incl. stuurgroep, werkgroep en stakeholdermanagement. 2. Onderzoeksactiviteiten, bestaande uit a) cross-chain-samenwerking, b) duurzaamheid en c) adoptie van digitale oplossingen voor datagedreven logistiek. 3. Management van een living lab, een ‘quadruple-helix-setting’ die fysieke en digitale leeromgevingen integreert voor onderwijs en multidisciplinair toegepast onderzoek.
MULTIFILE