The Heating Ventilation and Air Conditioning (HVAC) sector is responsible for a large part of the total worldwide energy consumption, a significant part of which is caused by incorrect operation of controls and maintenance. HVAC systems are becoming increasingly complex, especially due to multi-commodity energy sources, and as a result, the chance of failures in systems and controls will increase. Therefore, systems that diagnose energy performance are of paramount importance. However, despite much research on Fault Detection and Diagnosis (FDD) methods for HVAC systems, they are rarely applied. One major reason is that proposed methods are different from the approaches taken by HVAC designers who employ process and instrumentation diagrams (P&IDs). This led to the following main research question: Which FDD architecture is suitable for HVAC systems in general to support the set up and implementation of FDD methods, including energy performance diagnosis? First, an energy performance FDD architecture based on information embedded in P&IDs was elaborated. The new FDD method, called the 4S3F method, combines systems theory with data analysis. In the 4S3F method, the detection and diagnosis phases are separated. The symptoms and faults are classified into 4 types of symptoms (deviations from balance equations, operating states (OS) and energy performance (EP), and additional information) and 3 types of faults (component, control and model faults). Second, the 4S3F method has been tested in four case studies. In the first case study, the symptom detection part was tested using historical Building Management System (BMS) data for a whole year: the combined heat and power plant of the THUAS (The Hague University of Applied Sciences) building in Delft, including an aquifer thermal energy storage (ATES) system, a heat pump, a gas boiler and hot and cold water hydronic systems. This case study showed that balance, EP and OS symptoms can be extracted from the P&ID and the presence of symptoms detected. In the second case study, a proof of principle of the fault diagnosis part of the 4S3F method was successfully performed on the same HVAC system extracting possible component and control faults from the P&ID. A Bayesian Network diagnostic, which mimics the way of diagnosis by HVAC engineers, was applied to identify the probability of all possible faults by interpreting the symptoms. The diagnostic Bayesian network (DBN) was set up in accordance with the P&ID, i.e., with the same structure. Energy savings from fault corrections were estimated to be up to 25% of the primary energy consumption, while the HVAC system was initially considered to have an excellent performance. In the third case study, a demand-driven ventilation system (DCV) was analysed. The analysis showed that the 4S3F method works also to identify faults on an air ventilation system.
LINK
Nationwide and across the globe, the quality, affordability, and accessibility of home-based healthcare are under pressure. This issue stems from two main factors: the rapidly growing ageing population and the concurrent scarcity of healthcare professionals. Older people aspire to live independently in their homes for as long as possible. Additionally, governments worldwide have embraced policies promoting “ageing in place,” reallocating resources from institutions to homes and prioritising home-based services to honour the desire of older people to continue living at home while simultaneously addressing the rising costs associated with traditional institutional care.Considering the vital role of district nursing care and the fact that the population of older people in need of assistance at home is growing, it becomes clear that district nursing care plays a crucial role in primary care. The aim of this thesis is twofold: 1) to strengthen the evidence base for district nursing care; and 2) to explore the use of outcomes for learning and improving in district nursing care. The first part of this thesis examines the current delivery of district nursing care and explores its challenges during the COVID-19 pandemic to strengthen the evidence base and get a better understanding of district nursing care. Alongside the goal of strengthening the evidence for district nursing care, the second part of this thesis explores the use of patient outcomes for learning and improving district nursing care. It focuses on nurse-sensitive patient outcomes relevant to district nursing care, their current measurement in practice, and what is needed to use outcomes for learning and improving district nursing practice.