Blended behavior change interventions combine therapeutic guidance with online care. This new way of delivering health care is supposed to stimulate patients with chronic somatic disorders in taking an active role in their disease management. However, knowledge about the effectiveness of blended behavior change interventions and how they should be composed is scattered. This comprehensive systematic review aimed to provide an overview of characteristics and effectiveness of blended behavior change interventions for patients with chronic somatic disorders.
Background: The need for effective continuing education is especially high in in-hospital geriatric care, as older patients have a higher risk of complications, such as falls. It is important that nurses are able to prevent them. However, it remains unknown which interventions change the behavior of nurses. Therefore, the aim of this study is to identify intervention options to change the behavior of hospital nurses regarding fall prevention among older hospitalized patients. Methods: This study used a mixed method design. The Behavior Change Wheel (BCW) was used to identify intervention functions and policy categories to change the behavior of nurses regarding fall prevention. This study followed the eight steps of the BCW and two methods of data collection were used: five focus groups and three Delphi rounds. The focus groups were held with hospital nurses (n = 26). Geriatric experts (n = 11), managers (n = 13) and educators (n = 13) were included in the Delphi rounds. All data were collected within ten tertiary teaching hospitals in the Netherlands. All participants were included based on predefined in- and exclusion criteria and availability. Results: In Geriatric experts’ opinions interventions targeting behavior change of nurses regarding fall prevention should aim at ‘after-care’, ‘estimating fall risk’ and ‘providing information’. However, in nurses’ opinions it should target; ‘providing information’, ‘fall prevention’ and ‘multifactorial fall risk assessment’. Nurses experience a diversity of limitations relating to capability, opportunity and motivation to prevent fall incidents among older patients. Based on these limitations educational experts identified three intervention functions: Incentivisation, modelling and enablement. Managers selected the following policy categories; communication/marketing, regulation and environmental/social planning. Conclusions: The results of this study show there is a discrepancy in opinions of nurses, geriatric experts, managers and educators. Further insight in the role and collaboration of managers, educators and nurses is necessary for the development of education programs strengthening change at the workplace that enable excellence in nursing practice. DOI: https://doi.org/10.1186/s12912-021-00598-z
BackgroundPhysical activity can prevent or delay age-related impairments and prolong the ability of older adults to live independently. Community-based programs typically offer classes where older adults can exercise only once a week under the guidance of an instructor. The health benefits of such programs vary. Exercise frequency and the duration of the program play a key role in realizing effectiveness. An auxiliary home-based exercise program can provide older adults the opportunity to exercise more regularly over a prolonged period of time in the convenience of their own homes. Furthermore, mobile electronic devices can be used to motivate and remotely guide older adults to exercise in a safe manner. Such a blended intervention, where technology is combined with personal guidance, needs to incorporate behavior change principles to ensure effectiveness.ObjectiveThe aim of this study was to identify theory-based components of a blended intervention that supports older adults to exercise at home.MethodsThe Medical Research Council framework was used to develop the blended intervention. Insights from focus group, expert panels, and literature were combined into leading design considerations.ResultsA client-server system had been developed that combined a tablet app with a database in the cloud and a Web-based dashboard that can be used by a personal coach to remotely monitor and guide older adults. The app contains several components that facilitate behavior change—an interactive module for goal setting, the ability to draw up a personal training schedule from a library containing over 50 exercise videos, progress monitoring, and possibilities to receive remote feedback and guidance of a personal coach.ConclusionsAn evidence-based blended intervention was designed to promote physical activity among older adults. The underlying design choices were underpinned by behavior change techniques that are rooted in self-regulation. Key components of the tablet-supported intervention were a tailored program that accommodates individual needs, demonstrations of functional exercises, monitoring, and remote feedback. The blended approach combines the convenience of a home-based exercise program for older adults with the strengths of mobile health and personal guidance.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
In recent years, disasters are increasing in numbers, location, intensity and impact; they have become more unpredictable due to climate change, raising questions about disaster preparedness and management. Attempts by government entities at limiting the impact of disasters are insufficient, awareness and action are urgently needed at the citizen level to create awareness, develop capacity, facilitate implementation of management plans and to coordinate local action at times of uncertainty. We need a cultural and behavioral change to create resilient citizens, communities, and environments. To develop and maintain new ways of thinking has to start by anticipating long-term bottom-up resilience and collaborations. We propose to develop a serious game on a physical tabletop that allows individuals and communities to work with a moderator and to simulate disasters and individual and collective action in their locality, to mimic real-world scenarios using game mechanics and to train trainers. Two companies–Stratsims, a company specialized in game development, and Society College, an organization that aims to strengthen society, combine their expertise as changemakers. They work with Professor Carola Hein (TU Delft), who has developed knowledge about questions of disaster and rebuilding worldwide and the conditions for meaningful and long-term disaster preparedness. The partners have already reached out to relevant communities in Amsterdam and the Netherlands, including UNUN, a network of Ukrainians in the Netherlands. Jaap de Goede, an experienced strategy simulation expert, will lead outreach activities in diverse communities to train trainers and moderate workshops. This game will be highly relevant for citizens to help grow awareness and capacity for preparing for and coping with disasters in a bottom-up fashion. The toolkit will be available for download and printing open access, and for purchase. The team will offer training and facilitate workshops working with local communities to initiate bottom-up change in policy making and planning.
‘Dieren in de dijk’ aims to address the issue of animal burrows in earthen levees, which compromise the integrity of flood protection systems in low-lying areas. Earthen levees attract animals that dig tunnels and cause damages, yet there is limited scientific knowledge on the extent of the problem and effective approaches to mitigate the risk. Recent experimental research has demonstrated the severe impact of animal burrows on levee safety, raising concerns among levee management authorities. The consortium's ambition is to provide levee managers with validated action perspectives for managing animal burrows, transitioning from a reactive to a proactive risk-based management approach. The objectives of the project include improving failure probability estimation in levee sections with animal burrows and enhancing risk mitigation capacity. This involves understanding animal behavior and failure processes, reviewing existing and testing new deterrence, detection, and monitoring approaches, and offering action perspectives for levee managers. Results will be integrated into an open-access wiki-platform for guidance of professionals and in education of the next generation. The project's methodology involves focus groups to review the state-of-the-art and set the scene for subsequent steps, fact-finding fieldwork to develop and evaluate risk reduction measures, modeling failure processes, and processing diverse quantitative and qualitative data. Progress workshops and collaboration with stakeholders will ensure relevant and supported solutions. By addressing the knowledge gaps and providing practical guidance, the project aims to enable levee managers to effectively manage animal burrows in levees, both during routine maintenance and high-water emergencies. With the increasing frequency of high river discharges and storm surges due to climate change, early detection and repair of animal burrows become even more crucial. The project's outcomes will contribute to a long-term vision of proactive risk-based management for levees, safeguarding the Netherlands and Belgium against flood risks.