Carnitine/choline acyltransferases play diverse roles in energy metabolism and neuronal signalling. Our knowledge of their evolutionary relationships, important for functional understanding, is incomplete. Therefore, we aimed to determine the evolutionary relationships of these eukaryotic transferases. We performed extensivephylogenetic and intron position analyses. We found that mammalian intramitochondrial CPT2 is most closely related to cytosolic yeast carnitine transferases (Sc-YAT1 and 2), whereas the other members of the family are related to intraorganellar yeast Sc-CAT2. Therefore, the cytosolically active CPT1 more closely resembles intramitochondrial ancestors than CPT2. The choline acetyltransferase is closely related to carnitine acetyltransferase and shows lower evolutionary rates than long chain acyltransferases. In the CPT1 family several duplications occurred during animal radiation, leading to the isoforms CPT1A, CPT1B and CPT1C. In addition, we found five CPT1-like genes in Caenorhabditis elegans that strongly group to the CPT1 family. The long branch leading to mammalian brain isoform CPT1C suggests that either strong positive or relaxed evolution has taken place on this node. The presented evolutionary delineation of carnitine/choline acyltransferases adds to current knowledge on their functions and provides tangible leads for further experimental research.
MULTIFILE
12/31/2017ObjectiveThis systematic review aims to reevaluate the role of minerals on muscle mass, muscle strength, physical performance, and the prevalence of sarcopenia in community-dwelling and institutionalized older adults.DesignSystematic review.Setting and ParticipantsIn March 2022, a systematic search was performed in PubMed, Scopus, and Web of Sciences using predefined search terms. Original studies on dietary mineral intake or mineral serum blood concentrations on muscle mass, muscle strength, and physical performance or the prevalence of sarcopenia in older adults (average age ≥65 years) were included.MethodsEligibility screening and data extraction was performed by 2 independent reviewers. Quality assessment was performed with the Effective Public Health Practice Project (EPHPP) Quality Assessment Tool for Quantitative Studies. Risk of bias was evaluated using the Risk Of Bias In Non-randomized Studies-of Exposure (ROBINS-E) tool.ResultsFrom the 15,622 identified articles, a total of 45 studies were included in the review, mainly being cross-sectional and observational studies. Moderate quality of evidence showed that selenium (n = 8) and magnesium (n = 7) were significantly associated with muscle mass, strength, and physical performance as well as the prevalence of sarcopenia. For calcium and zinc, no association could be found. For potassium, iron, sodium, and phosphorus, the association with sarcopenic outcomes remains unclear as not enough studies could be included or were nonconclusive (low quality of evidence).Conclusions and ImplicationsThis systematic review shows a potential role for selenium and magnesium on the prevention and treatment of sarcopenia in older adults. More randomized controlled trials are warranted to determine the impact of minerals on sarcopenia in older adults.
MULTIFILE
07/31/2023The synthesis of total cellular proteins in Escherichia coli K12 was studied in batch culture following exposure of cells to low concentrations of monochlorophenol, pentachlorophenol and cadmium chloride. Changes in protein patterns were identified after pulse-chase labelling of proteins with [35S]methionine and subsequent two-dimensional gel electrophoresis (2D-PAGE). We demonstrated that besides the induction of some stress proteins, also a transient decrease in the rate of synthesis of other proteins occurred. Two of these proteins were identified as OmpF and aspartate transcarbamoylase (ATCase). Their transient repression appeared to be a general response to stress elicited by different pollutants and may therefore be used as a general and sensitive early warning system for pollutant stress.