The preference of students in competence-based Pre-Vocational Secondary Education (PVSE) for information processing strategies and the development of their body of knowledge were measured in a study that was carried out with 31 participants. The students' information processing strategies were measured by means of semi-structured interviews, questionnaires and think-aloud sessions. 26 of the 31 participants had a preference for surface processing strategies when working in workplace simulation. The other 5 students preferred deep learning. The learning environment appeared to elicit this surface level processing. The development of the body of knowledge of the students was measured by means of the concept mapping technique. For most students, an improvement of the body of knowledge took place in the course of the project in workplace simulation that was researched. Their knowledge became more elaborate and better organized. No significant relations between information processing strategies and the development of the concept maps could be found for the students participating in the research.
The purpose of this study was to analyse knowledge management research trends to understand the development of the field using a combination of scientometric, bibliometric, and visualisation techniques, subsequently developing a normative framework of knowledge management from the results.282 articles between the years 2010–2015 were retrieved, analysed, and visualised to produce the state of knowledge management during the selected timeframe. The results of this study provide a visualisation of the current research trends to understand the development of the knowledge management discipline. There are signals that the literature about knowledge management is progressing towards academic maturity. This study is one of the first studies to combine bibliometric and scientometric methods to assess productivity along with visualisation, and subsequently provide a knowledge management framework drawing from the results of these methods.
MULTIFILE
Dit onderdeel van de Body of Knowledge Sociaal werk beschrijft de methodiek van het Forensisch Sociaal Werk. De Body of Knowledge Sociaal Werk is een beschrijving van het kennisfundament voor het sociaal werk, bedoeld voor huidige en toekomstige sociale professionals. Huidige professionals kunnen de Body of Knowledge gebruiken om, waar nodig, hun kennis van het sociale domein bij te schaven. Voor studenten en docenten van sociaal agogische opleidingen vormt de Body of Knowledge een kader waaraan de kenniselementen uit de huidige opleidingen getoetst kunnen worden. De Body of Knowledge is opgebouwd uit de onderdelen: Methodieken, Professionalisering, Sociaal Wetenschappelijk, Ethiek en Beleid & organisatie. Elke onderdeel bevat een introductie en een aantal vensters waarin de basiskennis is weergegeven.
LINK
The research proposal aims to improve the design and verification process for coastal protection works. With global sea levels rising, the Netherlands, in particular, faces the challenge of protecting its coastline from potential flooding. Four strategies for coastal protection are recognized: protection-closed (dikes, dams, dunes), protection-open (storm surge barriers), advancing the coastline (beach suppletion, reclamation), and accommodation through "living with water" concepts. The construction process of coastal protection works involves collaboration between the client and contractors. Different roles, such as project management, project control, stakeholder management, technical management, and contract management, work together to ensure the project's success. The design and verification process is crucial in coastal protection projects. The contract may include functional requirements or detailed design specifications. Design drawings with tolerances are created before construction begins. During construction and final verification, the design is measured using survey data. The accuracy of the measurement techniques used can impact the construction process and may lead to contractual issues if not properly planned. The problem addressed in the research proposal is the lack of a comprehensive and consistent process for defining and verifying design specifications in coastal protection projects. Existing documents focus on specific aspects of the process but do not provide a holistic approach. The research aims to improve the definition and verification of design specifications through a systematic review of contractual parameters and survey methods. It seeks to reduce potential claims, improve safety, enhance the competitiveness of maritime construction companies, and decrease time spent on contractual discussions. The research will have several outcomes, including a body of knowledge describing existing and best practices, a set of best practices and recommendations for verifying specific design parameters, and supporting documents such as algorithms for verification.
A world where technology is ubiquitous and embedded in our daily lives is becoming increasingly likely. To prepare our students to live and work in such a future, we propose to turn Saxion’s Epy-Drost building into a living lab environment. This will entail setting up and drafting the proper infrastructure and agreements to collect people’s location and building data (e.g. temperature, humidity) in Epy-Drost, and making the data appropriately available to student and research projects within Saxion. With regards to this project’s effect on education, we envision the proposal of several derived student projects which will provide students the opportunity to work with huge amounts of data and state-of-the-art natural interaction interfaces. Through these projects, students will acquire skills and knowledge that are necessary in the current and future labor-market, as well as get experience in working with topics of great importance now and in the near future. This is not only aligned with the Creative Media and Game Technologies (CMGT) study program’s new vision and focus on interactive technology, but also with many other education programs within Saxion. In terms of research, the candidate Postdoc will study if and how the data, together with the building’s infrastructure, can be leveraged to promote healthy behavior through playful strategies. In other words, whether we can persuade people in the building to be more physically active and engage more in social interactions through data-based gamification and building actuation. This fits very well with the Ambient Intelligence (AmI) research group’s agenda in Augmented Interaction, and CMGT’s User Experience line. Overall, this project will help spark and solidify lasting collaboration links between AmI and CMGT, give body to AmI’s new Augmented Interaction line, and increase Saxion’s level of education through the dissemination of knowledge between researchers, teachers and students.
Client: European Institute of Innovation and Technology (EIT) The European Institute of Innovation & Technology, a body of the European Union founded to increase European sustainable growth and competitiveness, has set up a number of Knowledge and Innovation Communities (KIC). One of these Communities is on climate change (Climate-KIC). In 2013, Climate-KIC in the Netherlands approved funding for the IMPACT project (IMPlementation & Adoption of Carbon footprint in Tourism travel packages). This ‘pathfinder’ project aimed to assess the viability of and market for a comprehensive carbon calculator. Such a calculator would enable enterprises in the wider travel industry to determine the carbon dioxide emissions, the main cause for climate change, of tourism products and include ‘carbon management’ in their overall policy and strategy. It is generally expected the cost for fuel and carbon will significantly rise in the near en medium future. The calculator will not only cover flights, but also other transport modes, local tourism activities and accommodations. When this pathfinder project finds interest for carbon management within the sector, we aim to start a much larger follow-up project that will deliver the calculator and tools. The IMPACT project was coordinated by the research institute Alterra Wagenigen UR, the Netherlands. Partners were: - Schiphol Airport Group, Amsterdam, The Netherlands- Technical University Berlin, Germany- TEC Conseil, Marseille, France- TUI Netherlands, Rijswijk, The Netherlands- NHTV Breda University for Applied Sciences, The NetherlandsThe project ran from September 2013 to February 2014.