ObjectiveTo determine the effectiveness of the “Plants for Joints” multidisciplinary lifestyle program in patients with metabolic syndrome-associated osteoarthritis (MSOA).DesignPatients with hip or knee MSOA were randomized to the intervention or control group. The intervention group followed a 16-week program in addition to usual care based on a whole food plant-based diet, physical activity, and stress management. The control group received usual care. The patient-reported Western Ontario and McMasters Universities Osteoarthritis Index (WOMAC) total score (range 0–96) was the primary outcome. Secondary outcomes included other patient-reported, anthropometric, and metabolic measures. An intention-to-treat analysis with a linear-mixed model adjusted for baseline values was used to analyze between-group differences.ResultsOf the 66 people randomized, 64 completed the study. Participants (84% female) had a mean (SD) age of 63 (6) years and body mass index of 33 (5) kg/m2. After 16 weeks, the intervention group (n = 32) had a mean 11-point larger improvement in WOMAC-score (95% CI 6–16; p = 0.0001) compared to the control group. The intervention group also lost more weight (–5 kg), fat mass (–4 kg), and waist circumference (–6 cm) compared to the control group. Patient-Reported Outcomes Measurement Information System (PROMIS) fatigue, pain interference, C-reactive protein, hemoglobin A1c, fasting glucose, and low-density lipoproteins improved in the intervention versus the control group, while other PROMIS measures, blood pressure, high-density lipoproteins, and triglycerides did not differ significantly between the groups.ConclusionThe “Plants for Joints” lifestyle program reduced stiffness, relieved pain, and improved physical function in people with hip or knee MSOA compared to usual care.
MULTIFILE
BACKGROUND: Physical activity may be both a risk and protective factor for falls and fall-related fractures. Despite its positive effects on muscle and bone health, physical activity also increases exposure to situations where falls and fractures occur. This paradox could possibly be explained by frailty status. Therefore, the aim of this study was to investigate the associations between physical activity and both falls and fractures, and to determine whether frailty modifies the association of physical activity with falls, and fractures.METHODS: Data of 311 community-dwelling participants aged 75 years or older from the Longitudinal Aging Study Amsterdam, who participated in a three-year longitudinal study with five nine-monthly measurements between 2015/2016 and 2018/2019. Their mean age was 81.1 (SD 4.8) years and frailty was present in 30.9% of the participants. Physical activity in minutes per day was objectively assessed with an inertial sensor (Actigraph) for seven consecutive days. Falls and fractures were assessed every nine months using self-report during an interview over a follow-up period of three years. Frailty was determined at baseline using the frailty index. Associations were estimated using longitudinal logistic regression analyses based on generalized estimating equations.RESULTS: No association between physical activity and falls was found (OR = 1.00, 95% CI: 0.99-1.00). Fall risk was higher in frail compared to non-frail adults (OR = 2.21, 95% CI: 1.33-3.68), but no effect modification was seen of frailty on the association between physical activity and falls. Also no relation between physical activity and fractures was found (OR = 1.00, 95% CI: 0.99-1.01). Fracture risk was higher in frail compared to non-frail adults (OR = 2.81, 95% CI: 1.02-7.75), but also no effect modification of frailty was present in the association between physical activity and fractures.CONCLUSIONS: No association between physical activity and neither falls nor fractures was found, and frailty appeared not to be an effect modifier. However, frailty was a risk factor for falls and fractures in this population of older adults. Our findings suggest that physical activity can be safely recommended in non-frail and frail populations for general health benefits, without increasing the risk of falls.
MULTIFILE
Background: The objective of this study was to derive evidence-based physical activity guidelines for the general Dutch population. Methods: Two systematic reviews were conducted of English language meta-analyses in PubMed summarizing separately randomized controlled trials and prospective cohort studies on the relation between physical activity and sedentary behaviour on the one hand and the risk of all-cause mortality and incidence of 15 major chronic diseases and conditions on the other hand. Other outcome measures were risk factors for cardiovascular disease and type 2 diabetes, physical functioning, and fitness. On the basis of these reviews, an expert committee derived physical activity guidelines. In deriving the guidelines, the committee first selected only experimental and observational prospective findings with a strong level of evidence and then integrated both lines of evidence. Results: The evidence found for beneficial effects on a large number of the outcome measures was sufficiently strong to draw up guidelines to increase physical activity and reduce sedentary behaviour, respectively. At the same time, the current evidence did not provide a sufficient basis for quantifying how much physical activity is minimally needed to achieve beneficial health effects, or at what amount sedentary behaviour becomes detrimental. A general tenet was that at every level of current activity, further increases in physical activity provide additional health benefits, with relatively larger effects among those who are currently not active or active only at light intensity. Three specific guidelines on (1) moderate- and vigorous-intensity physical activity, (2) bone- and musclestrengthening activities, and (3) sedentary behaviour were formulated separately for adults and children. Conclusions: There is an unabated need for evidence-based physical activity guidelines that can guide public health policies. Research in which physical activity is measured both objectively (quantity) and subjectively (type and quality) is needed to provide better estimates of the type and actual amount of physical activity required for health.
Along with the rapidly growing number of disabled people participating in competitive sports, there is an increased need for (para)medical support in disability sports. Disabled athletes experience differences in body composition, metabolism, training load and habitual activity patterns compared with non-disabled athletes. Moreover, it has been suggested that the well-recognized athlete triad, and low energy availability and low bone mineral density in particular, is even a greater challenge in disabled athletes. Therefore, it is not surprising that sport nutritionists of disabled athletes have expressed an urgency for increased knowledge and insights on the nutritional demands of this group. This project aims to investigate energy expenditure, dietary intake, body composition and bone health of disabled athletes, ultimately leading to nutritional guidelines that promote health and optimal sports performance for this unique population. For this purpose, we will conduct a series of studies and implementation activities that are inter-related and build on the latest insights from sports practice, technology and science. Our international consortium is highly qualified to achieve this goal. It consists of knowledge institutes including world-leading experts in sport and nutrition research, complemented with practical insights from nutritionists working with disabled athletes and the involvement of athletes and teams through the Dutch and Norwegian Olympic committees. The international collaboration, which is a clear strength of this project, is not only focused on research, but also on the optimization of professional practice and educational activities. In this regard, the outcomes of this project will be directly available for practical use by the (para)medical staff working with disabled athletes, and will be extensively communicated to sport teams to ensure that the new insights are directly embedded into daily practice. The project outcomes will also be incorporated in educational activities for dietetics and sport and exercise students, thereby increasing knowledge of future practitioners.
Along with the rapidly growing number of disabled people participating in competitive sports, there is an increased need for (para)medical support in disability sports. Disabled athletes experience differences in body composition, metabolism, training load and habitual activity patterns compared with non-disabled athletes. Moreover, it has been suggested that the well-recognized athlete triad, and low energy availability and low bone mineral density in particular, is even a greater challenge in disabled athletes. Therefore, it is not surprising that sport nutritionists of disabled athletes have expressed an urgency for increased knowledge and insights on the nutritional demands of this group. This project aims to investigate energy expenditure, dietary intake, body composition and bone health of disabled athletes, ultimately leading to nutritional guidelines that promote health and optimal sports performance for this unique population. For this purpose, we will conduct a series of studies and implementation activities that are inter-related and build on the latest insights from sports practice, technology and science. Our international consortium is highly qualified to achieve this goal. It consists of knowledge institutes including world-leading experts in sport and nutrition research, complemented with practical insights from nutritionists working with disabled athletes and the involvement of athletes and teams through the Dutch and Norwegian Olympic committees. The international collaboration, which is a clear strength of this project, is not only focused on research, but also on the optimization of professional practice and educational activities. In this regard, the outcomes of this project will be directly available for practical use by the (para)medical staff working with disabled athletes, and will be extensively communicated to sport teams to ensure that the new insights are directly embedded into daily practice. The project outcomes will also be incorporated in educational activities for dietetics and sport and exercise students, thereby increasing knowledge of future practitioners.