PURPOSE: To evaluate the feasibility and outcomes of a tailored, goal-directed, and exercise-based physical therapy program for patients with metastatic breast cancer (MBC).METHODS: This was an observational, uncontrolled feasibility study. The physical therapy intervention was highly tailored to the individual patient's goals, abilities, and preferences and could include functional, strength, aerobic, and relaxation exercises. Feasibility outcomes were participation rate (expected: 25%), safety, and adherence (percentage of attended sessions relative to scheduled sessions). Additional outcomes were goal attainment, self-reported physical functioning, fatigue, health-related quality of life, and patient and physical therapist satisfaction with the program.RESULTS: Fifty-five patients (estimated participation rate: 34%) were enrolled. Three patients did not start the intervention due to early disease progression. An additional 22 patients discontinued the program prematurely, mainly due to disease progression. Median intervention adherence was 90% and no major intervention-related adverse events occurred. A goal attainment score was available for 42 patients (of whom 29 had completed the program and 13 had prematurely dropped out). Twenty-two (52%) of these patients achieved their main goal fully or largely and an additional 15 patients (36%) partially. Eighty-five percent would "definitely recommend" the program to other patients with MBC. We observed a modest improvement in patient satisfaction with physical activities (Cohen's dz 0.33).CONCLUSION: The tailored intervention program was feasible in terms of uptake, safety, and outcomes and was highly valued by patients and physical therapists. However, disease progression interfered with the program, leading to substantial dropout.TRIAL REGISTRATION: NTR register: NTR6475.
Het doel van het onderzoek is om te bepalen welke voordelen de fusie van PET-CT en MRI-CT hebben in het voorbereidingstraject van de behandeling van de gynaecologische patiënt met radiotherapie ten opzichte van CT alleen. Hierbij is gekeken naar voordelen met betrekking tot intekenen van doelvolumina en risico organen, effecten op intekenvariaties en ook de effecten op het bestralingsplan. Vooral MRI blijkt nuttig te zijn voor de intekening van lymfeklieren, het gebruik van PET in combinatie met CT laat een afname van het doelvolume zien van de primaire tumor. Bij het maken van het bestralingsplan wordt het gebruik van één van beide modaliteiten daarom aanbevolen.
BackgroundPhysical exercise in cancer patients is a promising intervention to improve cognition and increase brain volume, including hippocampal volume. We investigated whether a 6-month exercise intervention primarily impacts total hippocampal volume and additionally hippocampal subfield volumes, cortical thickness and grey matter volume in previously physically inactive breast cancer patients. Furthermore, we evaluated associations with verbal memory.MethodsChemotherapy-exposed breast cancer patients (stage I-III, 2–4 years post diagnosis) with cognitive problems were included and randomized in an exercise intervention (n = 70, age = 52.5 ± 9.0 years) or control group (n = 72, age = 53.2 ± 8.6 years). The intervention consisted of 2x1 hours/week of supervised aerobic and strength training and 2x1 hours/week Nordic or power walking. At baseline and at 6-month follow-up, volumetric brain measures were derived from 3D T1-weighted 3T magnetic resonance imaging scans, including hippocampal (subfield) volume (FreeSurfer), cortical thickness (CAT12), and grey matter volume (voxel-based morphometry CAT12). Physical fitness was measured with a cardiopulmonary exercise test. Memory functioning was measured with the Hopkins Verbal Learning Test-Revised (HVLT-R total recall) and Wordlist Learning of an online cognitive test battery, the Amsterdam Cognition Scan (ACS Wordlist Learning). An explorative analysis was conducted in highly fatigued patients (score of ≥ 39 on the symptom scale ‘fatigue’ of the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire), as previous research in this dataset has shown that the intervention improved cognition only in these patients.ResultsMultiple regression analyses and voxel-based morphometry revealed no significant intervention effects on brain volume, although at baseline increased physical fitness was significantly related to larger brain volume (e.g., total hippocampal volume: R = 0.32, B = 21.7 mm3, 95 % CI = 3.0 – 40.4). Subgroup analyses showed an intervention effect in highly fatigued patients. Unexpectedly, these patients had significant reductions in hippocampal volume, compared to the control group (e.g., total hippocampal volume: B = −52.3 mm3, 95 % CI = −100.3 – −4.4)), which was related to improved memory functioning (HVLT-R total recall: B = −0.022, 95 % CI = −0.039 – −0.005; ACS Wordlist Learning: B = −0.039, 95 % CI = −0.062 – −0.015).ConclusionsNo exercise intervention effects were found on hippocampal volume, hippocampal subfield volumes, cortical thickness or grey matter volume for the entire intervention group. Contrary to what we expected, in highly fatigued patients a reduction in hippocampal volume was found after the intervention, which was related to improved memory functioning. These results suggest that physical fitness may benefit cognition in specific groups and stress the importance of further research into the biological basis of this finding.
MULTIFILE