From November 2013 till January 2014 a minor ‘Smart Life Rhythms’ was taught at The Hague University of Applied Sciences. In the minor students used service design methods to develop solutions for improving life rhythms. Reflection on the minor produced the insight that building physical prototypes early on in the design process was key to success. Further discussions with colleagues and a literature review gave more arguments for the motto ‘Just build it’ – an encouragement to build simple physical models in the early stages of the service design process. Building these simple physical models is not just advocated by educators and in line with service design principles such as being iterative and user-centered. In his book ‘the Craftsman’ (Sennett, 2009) Richard Sennett provides us with more fundamental arguments regarding the value of ‘making things’. On top of the added value to the design process in itself, simple physical models are a tool for engaging both clients, users and students in the design process. So get out your glue gun and start building!
An important step towards improving performance while reducing weight and maintenance needs is the integration of composite materials into mechanical and aerospace engineering. This subject explores the many aspects of composite application, from basic material characterization to state-of-the-art advances in manufacturing and design processes. The major goal is to present the most recent developments in composite science and technology while highlighting their critical significance in the industrial sector—most notably in the wind energy, automotive, aerospace, and marine domains. The foundation of this investigation is material characterization, which offers insights into the mechanical, chemical, and physical characteristics that determine composite performance. The papers in this collection discuss the difficulties of gaining an in-depth understanding of composites, which is necessary to maximize their overall performance and design. The collection of articles within this topic addresses the challenges of achieving a profound understanding of composites, which is essential for optimizing design and overall functionality. This includes the application of complicated material modeling together with cutting-edge simulation tools that integrate multiscale methods and multiphysics, the creation of novel characterization techniques, and the integration of nanotechnology and additive manufacturing. This topic offers a detailed overview of the current state and future directions of composite research, covering experimental studies, theoretical evaluations, and numerical simulations. This subject provides a platform for interdisciplinary cooperation and creativity in everything from the processing and testing of innovative composite structures to the inspection and repair procedures. In order to support the development of more effective, durable, and sustainable materials for the mechanical and aerospace engineering industries, we seek to promote a greater understanding of composites.
Stedelijke natuurversterking is bij uitstek een thema dat door de schalen heen moet worden bekeken. Van pocket park en gevelbekleding tot stedelijke groenstructuur, de biodiversiteit komt het beste tot bloei door samenhang.In het SIA-project Natuurinclusieve Gebiedsontwikkeling onderzochten vier hogescholen - Aeres Hogeschool, Avans Hogeschool, Hogeschool van Amsterdam en Hogeschool Van Hall Larenstein - drie schaalniveaus van gebiedsontwikkeling om de transitie naar natuurinclusieve gebiedsontwikkeling te versnellen. Gekoppeld aan drie casussen waren dit: gebouw (Spoorzone Waarder), straat (Knowledge Mile Park - KMP - Amsterdam), en gebied (Almere Centrum-Pampus). De casussen belichten veelvoorkomende typen ingrepen, zoals kleinschalige nieuwbouw, verbetering van de publieke ruimte, en binnenstedelijke woningbouw. Ondanks dat elke case een eigen thematisch zwaartepunt had - biobased materialen (Spoorzone Waarder), natuurlijke vergroening (KMP), en governance (Almere) - heeft via deelonderzoeken en tussen hogescholen kruisbestuiving plaatsgevonden. De white paper geeft de belangrijkste resultaten en lessen hiervan weer.Urban nature enhancement is a theme that needs to be considered across different scale levels. From pocket parks and façade greening to urban green infrastructure, biodiversity thrives best through connectivity.In the SIA-project Nature-inclusive Area Development, four universities of applied sciences - Aeres University of Applied Sciences, Avans UAS, Amsterdam UAS, and Van Hall Larenstein UAS- researched three scale levels of area development to accelerate the transition to nature-inclusive area development. This was linked to three case studies: Waarder Railway Zone (building), Knowledge Mile Park (KMP - street - Amsterdam), and Almere Centre-Pampus (area). The case studies represent common types of urban interventions, such as small-scale new developments, improvement of public space, and inner-city densification. Despite each case having its own thematic focus - biobased materials (Waarder Railway Zone), natural greening (KMP), and governance (Almere) - cross-pollination took place through sub-studies and collaboration between universities. The following pages present the main results and lessons learnt.
MULTIFILE
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
ALE organised an event with Parktheater Eindhoven and LSA-citizens (the Dutch umbrella organisation for active citizens). Five ALE students from the minor Imagineering and business/social innovation took responsibility for concept and actual organisation. On Jan 18th, they were supported by six other group members of the minor as volunteers. An IMEM-team of 5 students gathered materials for a video that can support the follow-up actions of the organisers. The students planned to deliver their final product on February 9th. The theatre will critically assess the result and compare it to the products often realised by students from different schools or even professional ones, like Veldkamp productions. Time will tell whether future opportunities will come up for IMEM. The collaboration of ALE and IMEM students is possible and adding value to the project.More than 180 visitors showed interest in the efforts of 30 national and local citizen initiatives presenting themselves on the market square in the theatre and the diverse speakers during the plenary session. The students created a great atmosphere using the qualities of the physical space and the hospitality of the theatre. Chair of the day, Roland Kleve, kicked off and invited a diverse group of people to the stage: Giel Pastoor, director of the theatre, used the opportunity to share his thoughts on the shifting role of theatre in our dynamic society. Petra Ligtenberg, senior project manager SDG NL https://www.sdgnederland.nl/sdgs/ gave insights to the objectives and progress of the Netherlands. Elly Rijnierse, city maker and entrepreneur from Den Haag, presented her intriguing efforts in her own neighbourhood in the city to create at once both practical and social impacts on SDG 11 (sustainable city; subgoal 3.2). Then the alderman Marcel Oosterveer informed the visitors about Eindhoven’s efforts on SDGs. The plenary ended with very personal interviews of representatives of two impressive citizen initiatives (Parkinson to beat; Stichting Ik Wil). In the two workshop rounds, ALE took responsibility for two workshops. Firstly the workshop: Beyond SDG cherrypicking: using the Economy for the common good’, in cooperation with citizen initiative Ware winst Brabant en Parktheater (including Social innovation-intern Jasper Box), secondly a panel dialogue on local partnerships (SDG 17) for the sustainable city (SDG 11) addressing inclusion (SDG 10) and the livability (SDG 3) with 11 representatives from local/provincial government, companies, third sector and, of course: citizen initiatives.
Recent research by the renowned Royal Institution of Chartered Surveyors (RICS) shows that more than 2/3 of all CO2 is emitted during the building process and less than 1/3 during use to heat the building and the tap water. Lightweight, local and biobased materials such as biocomposites to replace concrete and fossil based cladding are in the framework of climate change, a necessity for future building. Using plant fiber in polymer composites is especially interesting for construction since natural fibers exhibit comparative good mechanical properties with small specific weight, which defines the potential for lightweight constructions. The use of renewable resources, will affect the ecosystem favorably and the production costs of construction materials could also decrease. However, one disadvantage of natural fibers in plastics is their hydrophilic properties. In construction the materials need to meet special requirements like the resistance against fluctuating weather conditions (Ticoalu et al., 2010). In contrast to synthetic fibers, the natural ones are more moisture- and UV-radiation-sensitive. That may lead to degradation of these materials and a decreasing in quality of products. (Lopez et al., 2006; Mokhothu und John, 2017) Tanatex and NPSP have approached CoE BBE/Avans to assist in a study where fibres impregnated with the (modified) Tanatex products will be used for reinforcement of thermoset biopolymers. The influence of the different Tanatex products on the moisture absorption of natural/cellulosic fibers and the adhesion on the fibers on main composite matrix will be measured. The effect of Tantex products can optimize the bonding reaction between the resin and the fibers in the (bio) composite and result to improved strength and physico-chemical properties of the biocomposite materials. (word count: 270)