This study is the first to estimate the size of the informal tourism economy. Using a dynamic general equilibrium model, this paper first estimates the size of the informal tourism economy and then assesses its linkages to key labour market variables in Thailand. Empirical results indicate that: (a) the informal tourism economy grows faster than the formal tourism and aggregate economy; (b) both formal and informal tourism economies absorb the unemployed; (c) the relationship between formal and informal economies is negative in the aggregate but positive in the tourism sector.
LINK
BackgroundEarly identification of older cardiac patients at high risk of readmission or mortality facilitates targeted deployment of preventive interventions. In the Netherlands, the frailty tool of the Dutch Safety Management System (DSMS-tool) consists of (the risk of) delirium, falling, functional impairment, and malnutrition and is currently used in all older hospitalised patients. However, its predictive performance in older cardiac patients is unknown.AimTo estimate the performance of the DSMS-tool alone and combined with other predictors in predicting hospital readmission or mortality within 6 months in acutely hospitalised older cardiac patients.MethodsAn individual patient data meta-analysis was performed on 529 acutely hospitalised cardiac patients ≥70 years from four prospective cohorts. Missing values for predictor and outcome variables were multiply imputed. We explored discrimination and calibration of: (1) the DSMS-tool alone; (2) the four components of the DSMS-tool and adding easily obtainable clinical predictors; (3) the four components of the DSMS-tool and more difficult to obtain predictors. Predictors in model 2 and 3 were selected using backward selection using a threshold of p = 0.157. We used shrunk c-statistics, calibration plots, regression slopes and Hosmer-Lemeshow p-values (PHL) to describe predictive performance in terms of discrimination and calibration.ResultsThe population mean age was 82 years, 52% were males and 51% were admitted for heart failure. DSMS-tool was positive in 45% for delirium, 41% for falling, 37% for functional impairments and 29% for malnutrition. The incidence of hospital readmission or mortality gradually increased from 37 to 60% with increasing DSMS scores. Overall, the DSMS-tool discriminated limited (c-statistic 0.61, 95% 0.56–0.66). The final model included the DSMS-tool, diagnosis at admission and Charlson Comorbidity Index and had a c-statistic of 0.69 (95% 0.63–0.73; PHL was 0.658).DiscussionThe DSMS-tool alone has limited capacity to accurately estimate the risk of readmission or mortality in hospitalised older cardiac patients. Adding disease-specific risk factor information to the DSMS-tool resulted in a moderately performing model. To optimise the early identification of older hospitalised cardiac patients at high risk, the combination of geriatric and disease-specific predictors should be further explored.
MULTIFILE
THE PDCA-CYCLE MIGHT NOT BE APPLICABLE in situations where change is unplanned or emergent. In situations of planned change the Deming cycle is used worldwide and proven to be very effective. However in an emergent change process the PDCA might not be the applicable. These emergent changes increase. In those cases, like Lao Tzu said: ‘A good traveller has no fixed plans, and is not intent on arriving’. Studying cultures that have another view on planning might help to find a new approach that fits in times of emergent change. Experiences in Africa lead to a new model for change called ACCRA (c). It also has reflection-in-action as its core. But it requires attention to people, considering the context and showing commitment as well along the whole process. This article describes the design and first experiences with a new approach for improvement in emergent change processes.
MULTIFILE
The value of data in general has become eminent in recent times. Autonomous vehicles and Connected Intelligent Transport Systems (C-ITS), in particular, are rapidly emerging fields that rely a lot on “big data”. Data acquisition has been an important part of automotive research and development for years even before the advent of Internet of Things (IoT). Most datalogging is done using specialized hardware that stores data in proprietary formats on traditional hard drives in PCs or dedicated managed servers. The use of Artificial Intelligence (AI) throughout the world and specifically in the automotive sector is largely reliant on the data for the development of new and reliable technologies. With the advent of IoT technologies, the reliability of data capture could be enhanced and can improve ease of real-time analytics for analysis/development of C-ITS services and Autonomous systems using vehicle data. Data acquisition for C-ITS applications requires putting together several different domains ranging from hardware, software, communication systems, cloud storage/processing, data analytics, legal and privacy aspects. This requires expertise from different domains that small and medium scale businesses usually lack. This project aims at investigating requirements that have to be met in order to collect data from vehicles. Furthermore, this project also aims at laying foundations required for the development of a unified guidelines required to collect data from vehicles. With these guidelines, businesses that intend to use vehicle data for their applications are not only guided on the technical aspects of data collection but also equally understand how data from vehicles could be harvested in a secure, efficient and responsible manner.