Het Project TBTOP is een samenwerkingsproject tussen onderwijsinstellingen voor VMBO, MBO en HBO om het techniek onderwijs samen met bedrijven in de regio aantrekkelijker te maken voor studenten, docenten en bedrijfsleven. Dit wil men realiseren door meer praktijknabij onderwijs te ontwikkelen. Ook wil men de vak-disciplinaire visie op het beroep verbreden en studenten kennis laten maken met doorstroommogelijkheden in studie en beroep. Een groep projectleiders uit de verschillende onderwijsinstellingen draagt zorg voor de voortgang van de vernieuwingsprocessen en verankering in het onderwijs. De betrokkenen hebben samenwerking in een nieuwe context ervaren namelijk samenwerking met de beroepspraktijk, samenwerking met andere vakdisciplines en samenwerking met andere onderwijsinstellingen (en dus onderwijsniveaus). Het samenwerken aan praktijkopdrachten in multidisciplinaire TOPteams is een nieuw proces geweest voor docenten en bedrijfsmedewerkers. Dit proces heeft, los van de concrete producten en processen, een cultuurverandering in het onderwijs in gang gezet. Groepen docenten zijn getriggerd om over de grenzen van hun vakgebied te kijken en naar het onderwijs te kijken, vanuit de bril van de praktijk. Hiermee hebben de betrokkenen zich geprofessionaliseerd. In de film die gemaakt is naar aanleiding van dit project, vertellen betrokkenen hun ervaringen binnen de nieuwe samenwerkingsvormen. De film is interactief en op verschillende momenten in te stappen. Bijlages bij de Eindrapportage: 1: Onderzoeksrapport Toekomst Bestendig Techniek Onderwijs Parkstad. 2: Leerwerkbedrijf de Wijk van Morgen, opgeleverd ?! 3: Verslag TOPgroep "Integraal Ontwerp" Mbo-breed. 4: Handboek Community for Development Bio Based Building. 5: GroeneBoord ; een ontwikkelproject voor seriematige woningbouw.
MULTIFILE
CC-BYNatural ventilation has been used widely in buildings to deliver a healthy and comfortable indoor environment for occupants. It also reduces the consumption of energy in the built environment and dilutes the concentration of carbon dioxide. Various methods and techniques have been used to evaluate and predict indoor airspeed and patterns in buildings. However, few studies have been implemented to investigate the relevant methods and tools for the evaluation of ventilation performance in indoor and outdoor spaces. The current study aims to review available methods, identifying reliable ones to apply in future research. This study investigates scientific databases and compares the advantages and drawbacks of methods including analytical models, empirical models, zonal models, and CFD models. wind-driven ventilation; analytical models; experimental models; zonal models; computational fluid dynamics (CFD) models; numerical discretization methods https://www.mdpi.com/2071-1050/13/22/12721Sustainability 2021, 13(22), 12721
MULTIFILE
Turbine blade cooling has been a topic of significant interest, as increasing turbine entry temperatures result in higher cooling requirements. The present numerical method divides the blade into a finite number of elements in the span and peripheral directions and solves the heat transfer fundamental equations for convection and conduction in both directions. As inputs, the span and chord gas temperature and heat transfer coefficient distributions are required. The results include high resolution temperature prediction for the blade and coolant, at all span and chord positions. The advantages of the method include the capturing of blade temperature variation in all directions, while considering the thermal diffusion due to conduction. Mach number effects to the resulted blade and coolant temperature are highlighted, as local distribution of the gas static temperature can have a dominant role. The effect of averaging the input parameters to the predicted blade temperature is discussed and finally, different values for the material conductivity are simulated and the results are analysed.
MULTIFILE
Verschillende maatschappelijke veranderingen dwingen de bouwbranche tot innovaties. Ondanks de potentie op het vlak van circulariteit en duurzaamheid van 3D-printen met kunststoffen kent deze technologie nog nauwelijks toepassingen in de bouw. Redenen hiervoor zijn achterblijvende materiaaleigenschappen en het verschil in cultuur tussen de bouwwereld en kunststofverwerkende industrie. Het bedrijf Phidias, richt zich op innovatieve en creatieve vastgoedconcepten. Samen met Zuyd Hogeschool (Zuyd) willen zij onderzoek doen naar het printen van bouwelementen waarbij de meerwaarde van 3D-printen wordt gezien in het combineren van materiaaleigenschappen. Zuyd heeft afgelopen jaren veel onderzoek gedaan naar het ontwikkelen van materialen voor 3D-printen (o.a. 2014-01-96 PRO). De volgende fase is de opgedane kennis toe te passen voor specifieke applicaties, in dit geval om de vraag van het MKB bedrijf Phidias te beantwoorden. Vanuit een ander MKB-bedrijf, MaukCC, ontwikkelaar van 3D printers, komt de vraag om de afstemming tussen materialen en hardware te optimaliseren. De combinatie van beide vragen uit het werkveld en de expertise bij Zuyd heeft geleid tot dit projectvoorstel. In deze pilotstudie ligt de focus voornamelijk op het 3D printen van één specifiek bouwkundig element met meerdere eigenschappen (bouwfysisch en constructief). De combinatie van eigenschappen wordt verkregen door gebruik te maken van twee (biobased) kunststoffen waarbij tevens een variatie wordt aangebracht in de geprinte structuren. Op deze manier kunnen grondstoffen worden gespaard. Het onderzoek sluit aan bij twee zwaartepunten van Zuyd, namelijk “Transitie naar een duurzaam gebouwde omgeving” en “Life science & materials”. De interdisciplinaire aanpak, op het grensvlak van de lectoraten “Material Sciences” (Gino van Strydonck) en “Sustainable Energy in the Built Environment” (Zeger Vroon) staat garant voor innovatief onderzoek. Integratie van onderwijs en onderzoek vindt plaats door studenten samen met een coach (docent) en ervaren professional aan dit onderzoek te laten werken in Communities for Development (CfD’s).
Eén op de 7 vrouwen in Nederland wordt met borstkanker gediagnostiseerd, wat neerkomt op meer dan 17.000 vrouwen per jaar. Monica Schlösser is één van de vrouwen die is geconfronteerd met borstkanker. In haar zoektocht naar een prothese kwam ze tot de conclusie dat de externe protheses die momenteel beschikbaar zijn niet voldoen aan de vraag uit de markt. De huidige protheses zijn gemaakt van siliconen en hebben als nadeel dat ze te zwaar zijn, niet aansluiten op de huid en niet ademen, met slecht draagcomfort als gevolg. Vanuit duurzaamheid hebben siliconen bovendien het grote nadeel dat ze door de gecrosslinkte structuur niet te recyclen/hergebruiken zijn. In haar zoektocht naar betere alternatieven is het innovatieve idee ontstaan om protheses te personaliseren door middel van 3D printen. Daartoe heeft zij het bedrijf Shap3d Up opgericht en Zuyd Hogeschool, meer specifiek het lectoraat Material Sciences, benaderd om op basis van haar expertise op het gebied van materiaalontwikkeling en 3D printen het idee te ondersteunen. De focus van dit project ligt op de materiaalkeuze en geschikte printtechniek waarmee het doel is te onderzoeken met welke combinatie van materiaal en 3D print techniek het haalbaar is een duurzame, comfortabele en gepersonaliseerde borstprothese te verkrijgen. Een geschikte prothese kan een einde maken aan onzekerheid en aan fysieke ongemakken, want daar worden vrouwen met borstkanker al genoeg mee geconfronteerd. Het onderzoek sluit aan bij twee transitiethema’s van Zuyd, namelijk “het versterken van de vitaliteit en participatie van de bevolking, ondersteund door innovatieve technologie” en ”het substantieel reduceren van de CO²-footprint van Chemelot, duurzaam produceren”. Integratie van onderwijs en onderzoek vindt plaats door studenten samen met een coach (docent) en ervaren professional aan dit onderzoek te laten werken in Communities for Development (CfD’s).
Aanleiding 3D-printen krijgt veel media-aandacht door de haast onbegrensde ontwerpmogelijkheden. De behaalde printsuccessen in de kunst en medische en industriële sector zorgen voor hoge verwachtingen. Niet alleen in de consumentenmarkt, maar ook in de sector voor functionele biomedische producten. De successen zijn echter grotendeels gebaseerd op metalen vormdelen en levend weefsel. Van polymere objecten zijn de printsnelheid en kwaliteit daarentegen ondermaats, zo stellen printerproducenten, dienstverleners en producenten van medische implantaten. Om 3D-printtechnieken naar een hoger plan te tillen, zijn polymeren nodig waarmee men functionele onderdelen met voldoende mechanische eigenschappen en langdurige vormvastheid kan printen binnen een acceptabel tijdspad. Doelstelling Hoofddoel van het project is de ontwikkeling van een selectie polymere materialen die optimaal presteren als filament ('3D-printgrondstof'). Het projectteam onderzoekt eerst de succesfactoren van meestgebruikte polymeer in 3D-printers: Polimelkzuur (PLA). Vervolgens wordt onderzocht hoe de PLA's verbeterd kunnen worden met secundaire hulpmiddelen, zoals kiemvormers en materiaalspecifieke vloeicondities. Daarna worden de moleculaire randvoorwaarden voor polyamiden en polyurethanen (twee veelbelovende polymeren) in filamentproductie onderzocht en naast de moleculaire randvoorwaarden voor 3D-printen gelegd: sluiten deze randvoorwaarden op elkaar aan of zijn er compromissen nodig? En hoe presteren op maat gemaakte polymeren? Beoogde resultaten Het programma beoogt drie resultaten: 1) Het ontwikkelen van hoogwaardige polymeren voor 3D-printen. Hiervoor moeten de nu losstaande processen van de waardeketen verbonden worden door professionals uit alle domeinen bij het project te betrekken. 2) Het implementeren van de verworven kennis in het onderwijs via mkb-stages bij consortiumpartners en Communities for Development (CfD's). Binnen een CfD werken studenten samen met een ervaren professional uit het bedrijfsleven. De professionals worden gecoacht door senior docent-onderzoekers van de opleiding Applied Sciences. Daarnaast zullen ook studenten en docenten van andere opleidingen van Zuyd Hogeschool, materiaaltechnologie-studenten van Fontys Leeuwenborgh (mbo) en studenten van Universiteit Maastricht participeren in de CfD's. Jaarlijks zullen minimaal 8 studenten deelnemen aan het onderzoek. 3) Verspreiding van de kennis via interne en externe nieuwsbrieven, 2 events en via de netwerken en websites van de deelnemende partijen.