The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (−9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth’s climate.
MULTIFILE
Direct Air Capture (DAC) technology is necessary to help achieve the EU's 2050 climate goals, since it allows for net-negative emissions. This will be needed to offset historic emissions while working alongside with other CCU technologies. To make DAC technology truly effective, the carbon footprint of the process itself should be as low as possible. This project describes research plans to minimize the DAC carbon footprint (as well as cost per ton of CO2) by developing technology to maximize DAC filter lifetimes. The project outlines a strategic partnership between Skytree, a Dutch DAC start-up, and Dr. Baumgarter’s research group at the University of Amsterdam. Based on Life Cycle Analyses (LCA) performed by Skytree, they have identified that extending the lifetime of DAC filters can lower the overall carbon footprint by 35%. Similarly, Techno-Economic Assessment indicated that this increased lifetime could lower the cost per ton of CO2 by 10%. To achieve this, both parties will develop an indicator technique to accurately describe filter lifetime to allow for data-driven optimized filter maintenance. The indicator development will expand on a patented technology developed by Skytree. The current technology uses a colorimetric dye to qualitatively assess filter capacity. By gaining access to advanced analytical methods built at UvA, this technology can be enhanced to allow for quantitative sorbent capacity and thus lifetime predictions. Since Dr. Baumgartner’s group specializes in building innovative spectroscopic technique that can monitor functional materials during gas sorption processes, the proposed studies will be able to directly and accurately link sorbent capture performance (using IR spectroscopy) with indicator dye intensity (using UV-Vis spectroscopy). This will allow for the fast development of a calibrated filter lifetime indicator. This makes the foreseen research highly practical and impactful, as the results will directly be implemented in commercial DAC/CCU technology.