Objectives In two randomised controlled trials, the Plants for Joints (PFJ) multidisciplinary lifestyle intervention reduced signs and symptoms of rheumatoid arthritis (RA), or metabolic syndrome-associated hip or knee osteoarthritis (MSOA) compared with usual care. The current study investigated long-term outcomes.Methods After completion of two 16-week trials in people with (1) RA or (2) MSOA, control groups switched to the active PFJ intervention. At the end of the intervention, all participants were followed up in a 1-year observational extension study. Primary outcomes were 28-joint Disease Activity Score (DAS28) (RA) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) (MSOA). Secondary outcomes included body composition, metabolic outcomes, medication changes and intervention adherence. An intention-to-treat analysis with a linear mixed model was used to analyse within-group changes.Results 65 (84%) of 77 RA participants and 49 (77%) of 64 MSOA participants completed the extension study. The effects of the PFJ intervention were replicated in the original control groups and sustained within the RA group a year after intervention completion (mean DAS28 –0.9 points; p<0.001), while in the MSOA group mean WOMAC increased towards but remained well under the starting value (–7.8 points, p<0.001). Improvements in C-reactive protein, waist circumference (RA and MSOA); low-density lipoprotein cholesterol (RA); and weight, haemoglobin A1c, blood pressure (MSOA) were also sustained. Participants had a net decrease of medication, and intervention adherence was largely sustained.Conclusions A year after the PFJ lifestyle intervention, improvements of disease activity and metabolic outcomes within RA and MSOA groups were largely sustained and related to sustained adherence, with a net decrease of medication.Trial registration numbers NL7800, NL7801.
MULTIFILE
BACKGROUND: Work-related musculoskeletal disorders (WMSDs) are a key topic in occupational health. In the primary prevention of these disorders, interventions to minimize exposure to work-related physical risk factors are widely advocated. Besides interventions aimed at the work organisation and the workplace, interventions are also aimed at the behaviour of workers, the so-called individual working practice (IWP). At the moment, no conceptual framework for interventions for IWP exists. This study is a first step towards such a framework.METHODS: A scoping review was carried out starting with a systematic search in Ovid Medline, Ovid Embase, Ovid APA PsycInfo, and Web of Science. Intervention studies aimed at reducing exposure to physical ergonomic risk factors involving the worker were included. The content of these interventions for IWP was extracted and coded in order to arrive at distinguishing and overarching categories of these interventions for IWP.RESULTS: More than 12.000 papers were found and 110 intervention studies were included, describing 810 topics for IWP. Eventually eight overarching categories of interventions for IWP were distinguished: (1) Workplace adjustment, (2) Variation, (3) Exercising, (4) Use of aids, (5) Professional skills, (6) Professional manners, (7) Task content & task organisation and (8) Motoric skills.CONCLUSION: Eight categories of interventions for IWP are described in the literature. These categories are a starting point for developing and evaluating effective interventions performed by workers to prevent WMSDs. In order to reach consensus on these categories, an international expert consultation is a necessary next step.KEYWORDS: Work related risk factors, Occupational training, Ergonomic interventions, Musculoskeletal diseases, Prevention and control
The wrist allows the hand to combine dorsopalmar flexion and radioulnar deviation, a unique combination of functions that is made possible by a highly complex system of joints. The morphologic features of the carpal bones and of the radiocarpal and intercarpal contacts can be functionally interpreted by the mechanism that underlies the movements of the hand to the forearm. Displacements of the carpals take place in longitudinal articulation chains, with the proximal carpals having the position of an intercalated bone. The three articulation chains, radial, central, and ulnar, have interdependent movements at the radiocarpal and midcarpal levels. The linkage of movements in the longitudinal direction is associated to a transverse linkage by mutual joint contacts and by specific ligamentous interconnections. Kinematic analyses of the carpal joint motions have provided convincing evidence that each motion of the hand to the forearm demonstrates a specific motion pattern of the carpal bones. The stability of the carpus essentially depends on the integrity of the ligamentous system which consists of interwoven fiber bundles that differ in length, direction, and mechanical properties. Distinct separations into morphologic entities are difficult to make. From a functional point of view, the ligamentous interconnections can be regarded as a system that passively restricts movements of the carpals on one another and on the radius, but in a very differentiated way. The ligamentous system controls the linkage of the movements of the carpals, with the geometries of the bones and of the joint surfaces being, first of all, responsible for the kinematic behavior of the carpal joint.