The future energy system could benefit from the integration of the independent gas, heat and electricity infrastructures. In addition to an increase in exergy efficiency, such a Hybrid Energy Network (HEN) could support the increase of intermittent renewable energy sources by offering increased operational flexibility. Nowadays, the expectations on Natural Gas resources forecast an increase in the application of Liquefied Natural Gas (LNG), as a means of storage and transportation, which has a high exergy value due to the low temperature. Therefore, we analysed the integration of a decentralized LNG regasification with a CHP (Waste-to-Energy) plant, to determine whether the integration could offer additional operational flexibility for the future energy network with intermittent renewable energy sources, under optimized exergy efficient conditions. We compared the independent system with two systems integrated by means of 1) Organic Rankine Cycle and 2) Stirling Engine using the cold of the LNG, that we analysed using a simplified deterministic model based on the energy hub concept. We use the hourly measured electricity and heat demand patterns for 200 households with 35% of the households producing electricity from PV according to a typical measured solar insolation pattern in The Netherlands. We found that for both systems the decentralized LNG regasification integrated with the W2E plant affects the imbalance of the system for electricity and heat, due to the additional redundant paths to produced electricity. The integration of the systems offers additional operational flexibility depending on the means of integration and its availability to produce additional energy carriers. For our future work, we will extend the model, taking into account the variability and randomness in the different parameters, which may cause significant changes in the performance and reliability of the model.
DOCUMENT
Renewable energy is often suggested as a possible solution for reducing greenhouse gas emissions and decreasing dependency on fossil energy sources. The most readily available renewable energy sources in Europe, wind, solar and biomass are dispersed by nature, making them ideally suited for use within Decentralized Energy Systems. Decentralized energy grids can help integrate renewable production, short lived by-products e.g. heat, minimize transport of energy carriers and fuel sources and reduce the dependency on fossils, hence, possibly improving the overall efficiency and sustainability of the energy distribution system. Within these grids balance between local renewable production and local energy demand is an important subject. Currently, fluctuations between demand and production of energy are mainly balanced by input from conventional power stations, which operate on storable fossil energy sources e.g. coal, oil, natural gas and nuclear. Within the long term scope of transition towards a low carbon intensive energy system, sustainable systems must be found which can replace fossil energy sources as load balancer in our energy supply systems.
DOCUMENT
In Europe, green hydrogen and biogas/green gas are considered important renewable energy carriers, besides renewable electricity and heat. Still, incentives proceed slowly, and the feasibility of local green gas is questioned. A supply chain of decentralised green hydrogen production from locally generated electricity (PV or wind) and decentralised green gas production from locally collected biomass and biological power-to-methane technology was analysed and compared to a green hydrogen scenario. We developed a novel method for assessing local options. Meeting the heating demand of households was constrained by the current EU law (RED II) to reduce greenhouse gas (GHG) emissions by 80% relative to fossil (natural) gas. Levelised cost of energy (LCOE) analyses at 80% GHG emission savings indicate that locally produced green gas (LCOE = 24.0 €ct kWh−1) is more attractive for individual citizens than locally produced green hydrogen (LCOE = 43.5 €ct kWh−1). In case higher GHG emission savings are desired, both LCOEs go up. Data indicate an apparent mismatch between heat demand in winter and PV electricity generation in summer. Besides, at the current state of technology, local onshore wind turbines have less GHG emissions than PV panels. Wind turbines may therefore have advantages over PV fields despite the various concerns in society. Our study confirms that biomass availability in a dedicated region is a challenge.
DOCUMENT
The European Union is striving for a high penetration of renewable energy production in the future energy grid. Currently, the EU energy directive is aiming for 20% renewable energy production in the year 2020. In future plans the EU strives for approximately 80% renewable energy production by the year 2050. However, high penetration of wind and solar PV energy production, both centrally and de-centrally, can possibly destabilize the electricity grid. The gas grid and the flexibility of gas, which can be transformed in both electricity and heat at different levels of scale, can help integrate and balance intermittent renewable production. One possible method of assisting the electricity grid in achieving and maintaining balance is by pre-balancing local decentralized energy grids. Adopting flexible gas based decentralized energy production can help integrate intermittent renewable electricity production, short lived by-products (e.g. heat) and at the same time minimize transport of energy carriers and fuel sources. Hence, decentralized energy grids can possibly improve the overall efficiency and sustainability of the energy distribution system. The flexibility aforementioned, can potentially give gas a pivotal role in future decentralized energy grids as load balancer. However, there are a lot of potentially variables which effect a successful integration of renewable intermittent production and load balancing within decentralized energy systems. The flexibility of gas in general opens up multiple fuel sources e.g., natural gas, biogas, syngas etc. and multiple possibilities of energy transformation pathways e.g. combined heat and power, fuel cells, high efficiency boilers etc. Intermittent renewable production is already increasing exponentially on the decentralized level where load balancing is still lacking.
DOCUMENT
The Dutch government decided to implement a road pricing system called, 'paying differently for mobility'. The main idea is that road users have to pay for using the road infrastructure instead of for owning a car. In the future, the price per kilometre will also depend on the time of the day and the location of the travel. Crowded locations and peak hours will be charged at a higher price per kilometre. In this study we examine the expected effect of the proposed road pricing scheme on logistics decisions to supply stores in urban areas based on in-depth interviews with carriers. Based on the revealed logistics reaction to current developments, such as the German LKW Maut, increasing congestion and the high fuel prices in 2008 and the stated reaction to the proposed road pricing scheme, we derive the expected impact of the scheme for urban goods transport in the Netherlands. The expected reactions differ between for-hire carries, shippers and private carriers. In the short term, carriers try to limit logistics changes by passing on extra costs or absorbing the extra costs in their margins. In the longer term, logistics changes are to be expected.
LINK
Mainstream views of Dutch foreign policy seem to be based upon a persistent assumption that, as a small Western European country, foreign policy is characterized by fundamental stability and continuity. In some regards this stability has almost become a policy and organizational guideline; however, this emphasis on stability as an empirical reality and management standard may be the result of inadequate concepts and models of foreign policy and organizational change. The following research questions are addressed in this article. What are the main carriers and barriers in Dutch foreign policy and organizational change? How can insights from international relations studies, and policy and organization studies be combined to give a model of foreign policy and organizational change? We propose a model based on 11 carriers and barriers for change at four levels of analysis: the international system; the national system; the organizational system; and the individual system. These carriers and barriers are used to explain three types of foreign policy change: policy instruments; strategy and goals; and political and normative foundations. Organizational change concerns: (1) change of roles; (2) change of tasks; (3) change of size of tasks and roles; (4) change of division of tasks and roles; and (5) change of the portfolio of tasks and roles. We discuss Dutch foreign policy towards its former colony Surinam and end with some suggestions for further research.
DOCUMENT
The aviation industry is a changing industry in which several factors influence the performance of the airport and the network of airports that are interconnected. Business models, technical operations in airspace and in the airfield, societal conditions among others are some of the ones that must be taken into account in order to get a full understanding of the cause-effect relationships that hinder the proper management of the system. In recent times with the evolution of the computer technology and the level of maturity of the algorithms used to simulate and analyse dynamic systems, simulation has gained more importance than before. Simulation approaches emerge as the ones that are able to take into account the stochastic nature of dynamic systems besides all the different factors that impact the systems under study. This is something that traditional analytical approaches could not evaluate and therefore under the constant change of the systems they lack of the proper flexibility to provide timely solutions. However with the popularity that simulation has gained, the different steps and good practices that must be taken into account are commonly forgotten when the simulation model is developed and then the system is analysed; in the particular case of the aviation industry this situation has gained particular importance.The current paper addresses some of the common flaws and pitfalls incurred when simulation is used for analysis of aeronautical systems. Pitfalls’ classification and suggestions for avoiding them are presented. Some flaws are exemplified through cases in which the conclusion from the analysis might differ depending on the angle of the analysis performed with the implications of different economic consequences for the decision makers. The main objective of this paper is that it serves as an eye-opener for a relatively novel researcher or practitioners in the art of simulation. It will serve for avoiding these common flaws when using simulation for addressing aviation problems.
DOCUMENT
A new urban consolidation centre, called Binnenstadservice.nl ('Inner city service'), started business in April 2008 in the Dutch city of Nijmegen. The consolidation centre in Nijmegen differs from initiatives in the past, distinguishing itself from other UCC initiatives by its focus on receivers rather than on carriers. After one year already 98 stores joined Binnenstadservice.nl and this number is still growing. Due to Binnenstadservice.nl, fewer trucks enter the city centre and fewer kilometres are driven. In this paper we provide insights into the local effects of the Binnenstadservice pilot after one year, such as air quality, inconvenience for residents and noise nuisance. The effects on local air quality and noise nuisance are limited, due to the amount of passenger and bus traffic remaining. Plans exist to start Binnenstadservice.nl franchises in other Dutch cities, which could result in making Binnenstadservice.nl a more serious partner for carriers to handle the transport of last mile distribution in cities.
LINK
This report focuses on the feasibility of the power-to-ammonia concept. Power-to-ammonia uses produced excess renewable electricity to electrolyze water, and then to react the obtained hydrogen with nitrogen, which is obtained through air separation, to produce ammonia. This process may be used as a “balancing load” to consume excess electricity on the grid and maintain grid stability. The product, ammonia, plays the role of a chemical storage option for excess renewable energy. This excess energy in the form of ammonia can be stored for long periods of time using mature technologies and an existing global infrastructure, and can further be used either as a fuel or a chemical commodity. Ammonia has a higher energy density than hydrogen; it is easier to store and transport than hydrogen, and it is much easier to liquefy than methane, and offers an energy chain with low carbon emissions.The objective of this study is to analyze technical, institutional and economic aspects of power-to-ammonia and the usage of ammonia as a flexible energy carrier.
DOCUMENT