The copper(II) catalyzed enantioselective 1,4-addition reactions of diethylzinc to cyclic enones in the presence of novel phosphorus amidite ligands, easily prepared from α,α,α',α'-tetraphenyl-2,2'-dimethyl-1,3- dioxolane-4,5-dimethanol (TADDOL) derivatives, resulted in e.e.s up to 71% for cyclohexenone and up to 62% for cyclopentenone. A remarkable enhancement of enantioselectivity was observed upon the addition of powdered molecular sieves to the reaction mixture.
Synthetic fibers, mainly polyethylene terephthalate (PET), polyamide (PA), polyacrylonitrile (PAN) and polypropylene (PP), are the most widely used polymers in the textile industry. These fibers surpass the production of natural fibers with a market share of 54.4%. The advantages of these fibers are their high modulus and strength, stiffness, stretch or elasticity, wrinkle and abrasion resistances, relatively low cost, convenient processing, tailorable performance and easy recycling. The downside to synthetic fibers use are reduced wearing comfort, build-up of electrostatic charge, the tendency to pill, difficulties in finishing, poor soil release properties and low dyeability. These disadvantages are largely associated with their hydrophobic nature. To render their surfaces hydrophilic, various physical, chemical and bulk modification methods are employed to mimic the advantageous properties of their natural counterparts. This review is focused on the application of recent methods for the modification of synthetic textiles using physical methods (corona discharge, plasma, laser, electron beam and neutron irradiations), chemical methods (ozone-gas treatment, supercritical carbon dioxide technique, vapor deposition, surface grafting, enzymatic modification, sol-gel technique, layer-by-layer deposition of nano-materials, micro-encapsulation method and treatment with different reagents) and bulk modification methods by blending polymers with different compounds in extrusion to absorb different colorants. Nowadays, the bulk and surface functionalization of synthetic fibers for various applications is considered as one of the best methods for modern textile finishing processes (Tomasino, 1992). This last stage of textile processing has employed new routes to demonstrate the great potential of nano-science and technology for this industry (Lewin, 2007). Combination of physical technologies and nano-science enhances the durability of textile materials against washing, ultraviolet radiation, friction, abrasion, tension and fading (Kirk–Othmer, 1998). European methods for application of new functional finishing materials must meet high ethical demands for environmental-friendly processing (Fourne, 1999). For this purpose the process of textile finishing is optimized by different researchers in new findings (Elices & Llorca, 2002). Application of inorganic and organic nano-particles have enhanced synthetic fibers attributes, such as softness, durability, breathability, water repellency, fire retardancy and antimicrobial properties (Franz, 2003; McIntyre, 2005; Xanthos, 2005). This review article gives an application overview of various physical and chemical methods of inorganic and organic structured material as potential modifying agents of textiles with emphasis on dyeability enhancements. The composition of synthetic fibers includes polypropylene (PP), polyethylene terephthalate (PET), polyamides (PA) or polyacrylonitrile (PAN). Synthetic fibers already hold a 54% market share in the fiber market. Of this market share, PET alone accounts for almost 50% of all fiber materials in 2008 (Gubitz & Cavaco-Paulo, 2008). Polypropylene, a major component for the nonwovens market accounts for 10% of the market share of both natural and synthetic fibers worldwide (INDA, 2008 and Aizenshtein, 2008). It is apparent that synthetic polymers have unique properties, such as high uniformity, mechanical strength and resistance to chemicals or abrasion. However, high hydrophobicity, the build-up of static charges, poor breathability, and resistant to finishing are undesirable properties of synthetic materials (Gubitz & Cavaco-Paulo, 2008). Synthetic textile fibers typically undergo a variety of pre-treatments before dyeing and printing is feasible. Compared to their cotton counterparts, fabrics made from synthetic fibers undergo mild scouring before dyeing. Nonetheless, these treatments still create undesirable process conditions wh
MULTIFILE
Paper sludge contains papermaking mineral additives and fibers, which could be reused or recycled, thus enhancing the circularity. One of the promising technologies is the fast pyrolysis of paper sludge, which is capable of recovering > 99 wt.% of the fine minerals in the paper sludge and also affording a bio-liquid. The fine minerals (e.g., ‘circular’ CaCO3) can be reused as filler in consumer products thereby reducing the required primary resources. However, the bio-liquid has a lower quality compared to fossil fuels, and only a limited application, e.g., for heat generation, has been applied. This could be significantly improved by catalytic upgrading of the fast pyrolysis vapor, known as an ex-situ catalytic pyrolysis approach. We have recently found that a high-quality bio-oil (mainly ‘bio-based’ paraffins and low-molecular-weight aromatics, carbon yield of 21%, and HHV of 41.1 MJ kg-1) was produced (Chem. Eng. J., 420 (2021), 129714). Nevertheless, catalyst deactivation occurred after a few hours’ of reaction. As such, catalyst stability and regenerability are of research interest and also of high relevance for industrial implementation. This project aims to study the potential of the add-on catalytic upgrading step to the industrial fast pyrolysis of paper sludge process. One important performance metric for sustainable catalysis in the industry is the level of catalyst consumption (kgcat tprod-1) for catalytic pyrolysis of paper sludge. Another important research topic is to establish the correlation between yield and selectivity of the bio-chemicals and the catalyst characteristics. For this, different types of catalysts (e.g., FCC-type E-Cat) will be tested and several reaction-regeneration cycles will be performed. These studies will determine under which conditions catalytic fast pyrolysis of paper sludge is technically and economically viable.
In the context of sustainability, the use of biocatalysis in organic synthesis is increasingly observed as an essential tool towards a modern and ‘green’ chemical industry. However, the lack of a diverse set of commercially available enzymes with a broad selectivity toward industrially-relevant substrates keeps hampering the widespread implementation of biocatalysis. Aminoverse B.V. aims to contribute to this challenge by developing enzymatic screening kits and identifying novel enzyme families with significant potential for biocatalysis. One of the most important, yet notoriously challenging reaction in organic synthesis is site-selective functionalization (e.g. hydroxylation) of inert C-H bonds. Interestingly, Fe(II)/α-ketoglutarate-dependent oxygenases (KGOs) have been found to perform C-H hydroxylation, as well as other oxyfunctionalization, spontaneously in nature. However, as KGOs are not commercially available, or even extensively studied in this context, their potential is not readily accessible to the chemical industry. This project aims to demonstrate the potential of KGOs in biocatalysis. In order to achieve this, the following challenges will be addressed: i) establishing an enzymatic screening methodology to study the activity and selectivity of recombinant KGOs towards industrially relevant substrates, ii) establishing analytical methods to characterize KGO-catalyzed substrate conversion and product formation. Eventually, the proof-of-principle demonstrated during this project will allow Aminoverse B.V. to develop a commercial biocatalysis kit comprised of KGO enzymes with a diverse activity profile, allowing their application in the sustainable production of either commodity, fine or speciality chemicals. The project consortium is composed of: i) Aminoverse B.V, a start-up company dedicated to facilitate chemical partners towards implementing biocatalysis in their chemical processes, and ii) Zuyd University, which will link Aminoverse B.V. with students and (bio)chemical professionals in creating a novel collaboration which will not only stimulate the development of (bio)chemical students, but also the translation of academic knowledge on KGOs towards a feasible biocatalytic application.
About 35-40 kton used mattresses available yearly for the recycling only in the Netherlands. Mattresses that are offered at recycling companies, municipal yards and retailers often find their way to incinerators. However, several fraction components of used mattresses can be reused/resale in a useful manner. One of the mattress fractions is textile cover with residue of Polyurethane (PU) foam. Effective removal of PU foam would enable further reuse of textile materials. Use of harsh chemicals/ thermo-, photo-, oxidative, processes including hydrolysis, aminolysis, phosphorolysis, glycolysis etc [1,2] for PU foam degradation is not a good solution, since it will cause non-specific damage to textiles and other parts, making recycle/ reuse difficult. Therefore, Mattress Recycling Europe BV (MRE) is looking for an eco-friendly mild process for selective degradation of PU foam component. PU is a mixed polymer; therefore, it is important to establish the physio-chemical nature of PU before identifying suitable and sustainable degradation route. The proposed solution is selective degradation of PU polymer using biotechnology. Enzymatic bio-catalysis enables a targeted, specific reaction at mild process conditions (pH, temperature) without harming other components in the process. Primarily hydrolase class of enzymes is assumed to be among the most effective options for the proposed degradation of PU foam residue [3,4]. From previous research, adding mechanical shear provides a synergistic effect for enzyme catalysed reaction [5-7]. Therefore, within the scope of this exploratory practice-oriented project, technical feasibility of bio-catalyst and shear (including well established PU degradation techniques) towards the selective degradation of PU foam residue attached to textile part from used mattresses will be explored together with cost estimation of the overall process and re-usability of enzymes using suitable immobilisation technique, addressing an urgent industrial need in the field of green chemistry.