Several recent works in human-robot-interaction (HRI) have begun to highlight the importance of the replication crisis and open science practices for our field. Yet, suggestions and recommendations tailored to child-robot-interaction (CRI) research, which poses it's own additional set of challenges, remain limited. There is also an increased need within both HRI and CRI for inter and cross-disciplinary collaborations, where input from multiple different domains can contribute to better research outcomes. Consequently, this workshop aims to facilitate discussions between researchers from diverse disciplines within CRI. The workshop will open with a panel discussion between CRI researchers from different disciplines, followed by 3-minute flash talks of the accepted submissions. The second half of the workshop will consist of breakout group discussions, where both senior and junior academics from different disciplines can share their experiences of conducting CRI research. Through this workshop we hope to create a common ground for addressing shared challenges in CRI, as well as identify a set of possible solutions going forward.
LINK
Maintaining the child-robot relationship after a significant break, such as a holiday, is an important step for developing sustainable social robots for education. We ran a four-session user study (n = 113 children) that included a nine-month break between the third and fourth session. During the study, participants practiced math with the help of a social robot math tutor. We found that social personalization is an effective strategy to better sustain the child-robot relationship than the absence of social personalization. To become reacquainted after the long break, the robot summarizes a few pieces of information it had stored about the child. This gives children a feeling of being remembered, which is a key contributor to the effectiveness of social personalization. Enabling the robot to refer to information previously shared by the child is another key contributor to social personalization. Conditional for its effectiveness, however, is that children notice these memory references. Finally, although we found that children's interest in the tutoring content is related to relationship formation, personalizing the topics did not lead to more interest in the content. It seems likely that not all of the memory information that was used to personalize the content was up-to-date or socially relevant.
MULTIFILE
This study investigated a seven sessions interaction between a peer-tutor robot and Dutch preschoolers (5 years old) during which the children learned English. We examined whether children’s engagement differed when interacting with a tablet and a robot using iconic gestures, with a tablet and a robot using no iconic gestures and with only a tablet. Two engagement types were annotated (task engagement and robot engagement) using a novel coding scheme based on an existing coding scheme used in kindergartens. The findings revealed that children’s task engagement dropped over time in all three conditions, consistent with the novelty effect. However, there were no differences between the different conditions for task engagement. Interestingly, robot engagement showed a difference between conditions. Children were more robot engaged when interacting with a robot using iconic gestures than without iconic gestures. Finally, when comparing children’s word knowledge with their engagement, we found that both task engagement and robot engagement were positively correlated with children’s word retention.
DOCUMENT
Maintaining the child-robot relationship after a significant break, such as a holiday, is an important step for developing sustainable social robots for education. We ran a four-session user study (n = 113 children) that included a nine-month break between the third and fourth session. During the study, participants practiced math with the help of a social robot math tutor. We found that social personalization is an effective strategy to better sustain the child-robot relationship than the absence of social personalization. To become reacquainted after the long break, the robot summarizes a few pieces of information it had stored about the child. This gives children a feeling of being remembered, which is a key contributor to the effectiveness of social personalization. Enabling the robot to refer to information previously shared by the child is another key contributor to social personalization. Conditional for its effectiveness, however, is that children notice these memory references. Finally, although we found that children's interest in the tutoring content is related to relationship formation, personalizing the topics did not lead to more interest in the content. It seems likely that not all of the memory information that was used to personalize the content was up-to-date or socially relevant.
DOCUMENT
The challenges facing primary education are significant: a growing teacher shortage, relatively high administrative burdens that contribute to work-related stress and an increasing diversity of children in the classroom. A promising new technology that can help teachers and children meet these challenges is the social robot. These physical robots often use artificial intelligence and can communicate with children by taking on social roles, such as that of a fellow classmate or teaching assistant. Previous research shows that the use of social robots can lead to better results in several ways than when traditional educational technologies are applied. However, social robots not only bring opportunities but also lead to new ethical questions. In my PhD research, I investigated the moral considerations of different stakeholders, such as parents and teachers, to create the first guideline for the responsible design and use of social robots for primary education. Various research methods were used for this study. First of all, a large, international literature study was carried out on the advantages and disadvantages of social robots, in which 256 studies were ultimately analysed. Focus group sessions were then held with stakeholders: a total of 118 parents of primary school children, representatives of the robotics industry, educational policymakers, government education advisors, teachers and primary school children contributed. Based on the insights from the literature review and the focus group sessions, a questionnaire was drawn up and distributed to all stakeholders. Based on 515 responses, we then classified stakeholder moral considerations. In the last study, based on in-depth interviews with teachers who used robots in their daily teaching and who supervised the child-robot interaction of >2500 unique children, we studied the influence of social robots on children's social-emotional development. Our research shows that social robots can have advantages and disadvantages for primary education. The diversity of disadvantages makes the responsible implementation of robots complex. However, overall, despite their concerns, all stakeholder groups viewed social robots as a potentially valuable tool. Many stakeholders are concerned about the possible negative effect of robots on children's social-emotional development. Our research shows that social robots currently do not seem to harm children's social-emotional development when used responsibly. However, some children seem to be more sensitive to excessive attachment to robots. Our research also shows that how people think about robots is influenced by several factors. For example, low-income stakeholders have a more sceptical attitude towards social robots in education. Other factors, such as age and level of education, were also strong predictors of the moral considerations of stakeholders. This research has resulted in a guideline for the responsible use of social robots as teaching assistants, which can be used by primary schools and robot builders. The guideline provides schools with tools, such as involving parents in advance and using robots to encourage human contact. School administrators are also given insight into possible reactions from parents and other parties involved. The guideline also offers guidelines for safeguarding privacy, such as data minimization and improving the technical infrastructure of schools and robots; which still often leaves much to be desired. In short, the findings from this thesis provide a solid stepping stone for schools, robot designers, programmers and engineers to develop and use social robots in education in a morally responsible manner. This research has thus paved the way for more research into robots as assistive technology in primary education.
LINK
Hospitalisation is stressful for children. Play material is often offered for distraction and comfort. Weexplored how contact with social robot PLEO could positively affect a child’s well-being. To this end, we performed a multiple case study on the paediatric ward of two hospitals. Child life specialists offered PLEO as a therapeutic activity to children in a personalised way for a well-being related purpose in three to five play like activity sessions during hospital visits/stay. Robot–child interaction was observed; care professionals, children and parents were interviewed. Applying direct content analysis revealed six categories of interest: interaction with PLEO, role of the adults, preferences for PLEO, PLEO as buddy, attainment of predetermined goal(s) and deployment of PLEO. Four girls and five boys, aged 4–13, had PLEO offered as a relief from stress or boredom or for physical stimulation. All but one started interacting with PLEO and showed behaviours like hugging, caring or technical exploration, promoting relaxation, activation and/or making contact. Interaction with PLEO contributed to achieving the well-being related purpose for six of them. PLEO was perceived as attractive to elicit play. Although data are limited, promising results emerge that the well-being of hospitalised children might be fostered by a personalised PLEO offer.
DOCUMENT
To benefit from the social capabilities of a robot math tutor, instead of being distracted by them, a novel approach is needed where the math task and the robot's social behaviors are better intertwined. We present concrete design specifications of how children can practice math via a personal conversation with a social robot and how the robot can scaffold instructions. We evaluated the designs with a three-session experimental user study (n = 130, 8-11 y.o.). Participants got better at math over time when the robot scaffolded instructions. Furthermore, the robot felt more as a friend when it personalized the conversation.
MULTIFILE
Social robots have been introduced in different fields such as retail, health care and education. Primary education in the Netherlands (and elsewhere) recently faced new challenges because of the COVID-19 pandemic, lockdowns and quarantines including students falling behind and teachers burdened with high workloads. Together with two Dutch municipalities and nine primary schools we are exploring the long-term use of social robots to study how social robots might support teachers in primary education, with a focus on mathematics education. This paper presents an explorative study to define requirements for a social robot math tutor. Multiple focus groups were held with the two main stakeholders, namely teachers and students. During the focus groups the aim was 1) to understand the current situation of mathematics education in the upper primary school level, 2) to identify the problems that teachers and students encounter in mathematics education, and 3) to identify opportunities for deploying a social robot math tutor in primary education from the perspective of both the teachers and students. The results inform the development of social robots and opportunities for pedagogical methods used in math teaching, child-robot interaction and potential support for teachers in the classroom
DOCUMENT
While social robots bring new opportunities for education, they also come with moral challenges. Therefore, there is a need for moral guidelines for the responsible implementation of these robots. When developing such guidelines, it is important to include different stakeholder perspectives. Existing (qualitative) studies regarding these perspectives however mainly focus on single stakeholders. In this exploratory study, we examine and compare the attitudes of multiple stakeholders on the use of social robots in primary education, using a novel questionnaire that covers various aspects of moral issues mentioned in earlier studies. Furthermore, we also group the stakeholders based on similarities in attitudes and examine which socio-demographic characteristics influence these attitude types. Based on the results, we identify five distinct attitude profiles and show that the probability of belonging to a specific profile is affected by such characteristics as stakeholder type, age, education and income. Our results also indicate that social robots have the potential to be implemented in education in a morally responsible way that takes into account the attitudes of various stakeholders, although there are multiple moral issues that need to be addressed first. Finally, we present seven (practical) implications for a responsible application of social robots in education following from our results. These implications provide valuable insights into how social robots should be implemented
MULTIFILE
Aim: There is often a gap between the ideal of involving older persons iteratively throughout the design process of digital technology, and actual practice. Until now, the lens of ageism has not been applied to address this gap. The goals of this study were: to voice the perspectives and experiences of older persons who participated in co-designing regarding the design process; their perceived role in co-designing and intergenerational interaction with the designers; and apparent manifestations of ageism that potentially influence the design of digital technology. Methods: Twenty-one older persons participated in three focus groups. Five themes were identified using thematic analysis which combined a critical ageism ‘lens’ deductive approach and an inductive approach. Results: Ageism was experienced by participants in their daily lives and interactions with the designers during the design process. Negative images of ageing were pointed out as a potential influencing factor on design decisions. Nevertheless, positive experiences of inclusive design pointed out the importance of “partnership” in the design process. Participants defined the “ultimate partnership” in co-designing as processes in which they were involved from the beginning, iteratively, in a participatory approach. Such processes were perceived as leading to successful design outcomes, which they would like to use, and reduced intergenerational tension. Conclusions: This study highlights the potential role of ageism as a detrimental factor in how digital technologies are designed. Viewing older persons as partners in co-designing and aspiring to more inclusive design processes may promote designing technologies that are needed, wanted and used.
DOCUMENT