As part of the American Society of Civil Engineers E-Newsletter at page 5&6.
DOCUMENT
The pace of introduction of new technology and thus continuous change in skill needs at workplaces, especially for the engineers, has increased. While digitization induced changes in manufacturing, construction and supply chain sectors may not be felt the same in every sector, this will be hard to escape. Both young and experienced engineers will experience the change, and the need to continuously assess and close the skills gap will arise. How will we, the continuing engineering educators and administrators will respond to it? Prepared for engineering educators and administrators, this workshop will shed light on the future of continuing engineering education as we go through exponentially shortened time frames of technological revolution and in very recent time, in an unprecedented COVID-19 pandemic. S. Chakrabarti, P. Caratozzolo, E. Sjoer and B. Norgaard.
DOCUMENT
This paper aims to present a comprehensive investigation to obtain the structural calculations needed to design a rigid panel of aluminum alloy for the wing box beam of an ATR 72–500 aircraft. For this design process, several types of materials, including composites like CFRP, are considered so it is possible to compare the actual existing part made of aluminum to them, thus checking the advantages these new materials offer. The research presents an introduction to structural design and provides a study of the relevant literature. The aircraft's principal characteristics and performance abilities were collected so that structural loads can be computed. Research used several methods, a design using conventional methods, applying the theory of elasticity is performed using the Theory of Farrar, allowing us to obtain an analytical solution to the problem, followed by checking the obtained results using Ansys FEM software combined with the parts being designed with CATIA. Furthermore, this same panel is calculated using composite materials instead of conventional aluminum, allowing us to compare both solutions. This research shed light on the intricate process of aircraft structural design, materials selection, and calculation methodologies, highlighting the ongoing pursuit of new and advanced materials. This paper makes clear that using composite materials presents several advantages over traditional ones, allowing for lighter, safer, more fuel-efficient, and more sustainable aircraft. The use of composite materials in the construction of airplane structures is driven by many factors. The results show that the chosen composite materials reduce weight, are durable, have low maintenance requirements, reduce noise, enhance fuel economy, and are resistant to corrosion.
DOCUMENT
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
The postdoc candidate, Sondos Saad, will strengthen connections between research groups Asset Management(AM), Data Science(DS) and Civil Engineering bachelor programme(CE) of HZ. The proposed research aims at deepening the knowledge about the complex multidisciplinary performance deterioration prediction of turbomachinery to optimize cleaning costs, decrease failure risk and promote the efficient use of water &energy resources. It targets the key challenges faced by industries, oil &gas refineries, utility companies in the adoption of circular maintenance. The study of AM is already part of CE curriculum, but the ambition of this postdoc is that also AM principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop an AM material science line and will facilitate applied research experiences for students, in collaboration with engineering companies, operation &maintenance contractors and governmental bodies. Consequently, a new generation of efficient sustainability sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment being more sustainable with less CO2 footprint, with possible connections with other fields of study, such as Engineering, Economics &Chemistry. The project is also strongly contributing to the goals of the National Science Agenda(NWA), in themes of “Circulaire economie en grondstoffenefficiëntie”,”Meten en detecteren: altijd, alles en overall” &”Smart Industry”. The final products will be a framework for data-driven AM to determine and quantify key parameters of degradation in performance for predictive AM strategies, for the application as a diagnostic decision-support toolbox for optimizing cleaning &maintenance; a portfolio of applications &examples; and a new continuous learning line about AM within CE curriculum. The postdoc will be mentored and supervised by the Lector of AM research group and by the study programme coordinator(SPC). The personnel policy and job function series of HZ facilitates the development opportunity.