As part of the American Society of Civil Engineers E-Newsletter at page 5&6.
DOCUMENT
The pace of introduction of new technology and thus continuous change in skill needs at workplaces, especially for the engineers, has increased. While digitization induced changes in manufacturing, construction and supply chain sectors may not be felt the same in every sector, this will be hard to escape. Both young and experienced engineers will experience the change, and the need to continuously assess and close the skills gap will arise. How will we, the continuing engineering educators and administrators will respond to it? Prepared for engineering educators and administrators, this workshop will shed light on the future of continuing engineering education as we go through exponentially shortened time frames of technological revolution and in very recent time, in an unprecedented COVID-19 pandemic. S. Chakrabarti, P. Caratozzolo, E. Sjoer and B. Norgaard.
DOCUMENT
In the current discourses on sustainable development, one can discern two main intellectual cultures: an analytic one focusing on measuring problems and prioritizing measures, (Life Cycle Analysis (LCA), Mass Flow Analysis (MFA), etc.) and; a policy/management one, focusing on long term change, change incentives, and stakeholder management (Transitions/niches, Environmental economy, Cleaner production). These cultures do not often interact and interactions are often negative. However, both cultures are required to work towards sustainability solutions: problems should be thoroughly identified and quantified, options for large change should be guideposts for action, and incentives should be created, stakeholders should be enabled to participate and their values and interests should be included in the change process. The paper deals especially with engineering education. Successful technological change processes should be supported by engineers who have acquired strategic competences. An important barrier towards training academics with these competences is the strong disciplinarism of higher education. Raising engineering students in strong disciplinary paradigms is probably responsible for their diminishing public engagement over the course of their studies. Strategic competences are crucial to keep students engaged and train them to implement long term sustainable solutions.
DOCUMENT
This paper outlines an investigation into the updating of fatigue reliability through inspection data by means of structural correlation. The proposed methodology is based on the random nature of fatigue fracture growth and the probability of damage detection and introduces a direct link between predicted crack size and inspection results. A distinct focus is applied on opportunities for utilizing inspection information for the updating of both inspected and uninspected (or uninspectable) locations.
DOCUMENT
The ‘Grand Challenges’ of our times, like climate change, resource depletion, global inequity, and the destruction of wildlife and biodiversity can only be addressed by innovating cities. Despite the options of tele-working, tele-trading and tele-amusing, that allow people to participate in ever more activities, wherever they are, people are resettling in cities at an unprecedented speed. The forecasted ‘rurification’ of society did not occur. Technological development has drained rural society from its main source of income, agriculture, as only a marginal fraction of the labour force is employed in agriculture in the rich parts of the world. Moreover, technological innovation created new jobs in the IT and service sectors in cities. Cities are potentially far more resource efficient than rural areas. In a city transport distances are shorter, infrastructures can be applied to provide for essential services in a more efficient way and symbiosis might be developed between various infrastructures. However, in practice, urban infrastructures are not more efficient than rural infrastructures. This paper explores the reasons why. It digs into the reasons why the symbiotic options that are available in cities are not (sufficiently) utilised. The main reason for this is not of an economic nature: Infrastructure organisations are run by experts who are part of a strong paradigmatic community. Dependence on other organisations is regarded as limiting the infrastructure organisation’s freedom of action to achieve its own goals. Expert cultures are transferred in education, professional associations, and institutional arrangements. By 3 concrete examples of urban systems, the paper will analyse how various paradigms of experts co-evolved with evolving systems. The paper reflects on recent studies that identified professional education as the initiation into such expert paradigms. It will thereby relate lack of urban innovation to the monodisciplinary education of experts and the strong institutionalised character of expertise. https://doi.org/10.1007/978-3-319-63007-6_43 LinkedIn: https://www.linkedin.com/in/karelmulder/
MULTIFILE
Can you remember the last time the ground gave way beneath you? When you thought the ground was stable, but for some reason it wasn’t? Perhaps you encountered a pothole on the streets of Amsterdam, or you were renovating your house and broke through the floor. Perhaps there was a molehill in a park or garden. You probably had to hold on to something to steady yourself. Perhaps you even slipped or fell. While I sincerely hope that nobody here was hurt in the process, I would like you to keep that feeling in your mind when reading what follows. It is the central theme of the words that will follow. The ground beneath our feet today is not as stable as the streets of Amsterdam, your park around the corner or even a poorly renovated upstairs bedroom. This is because whatever devices we use and whatever pathways we choose, we all live in hybrid physical and digital social spaces (Kitchin and Dodge 2011). Digital social spaces can be social media platforms like Twitter or Facebook, but also chat apps like WhatsApp or Signal. Crucially, social spaces are increasingly hybrid, in which conversations take place across digital spaces (WhatsApp chat group) and physical spaces (meeting friends in a cafe) simultaneously. The ground beneath our feet is not made of concrete or stone or wood but of bits and bytes.
DOCUMENT
Lecture held by Derk-Jan Stobbelaar and Hugo Hoofwijk at the International Living Knowledge Conference in 2012 in Bonn, Germany.
DOCUMENT
Masonry structures represent the highest proportion of building stock worldwide. Currently, the structural condition of such structures is predominantly manually inspected which is a laborious, costly and subjective process. With developments in computer vision, there is an opportunity to use digital images to automate the visual inspection process. The aim of this study is to examine deep learning techniques for crack detection on images from masonry walls. A dataset with photos from masonry structures is produced containing complex backgrounds and various crack types and sizes. Different deep learning networks are considered and by leveraging the effect of transfer learning crack detection on masonry surfaces is performed on patch level with 95.3% accuracy and on pixel level with 79.6% F1 score. This is the first implementation of deep learning for pixel-level crack segmentation on masonry surfaces. Codes, data and networks relevant to the herein study are available in: github.com/dimitrisdais/crack_detection_CNN_masonry.
DOCUMENT
This study examines the relationships between students’ perceptions of heavy study load, time spent on learning, study strategies, and learning outcomes. Student’s study strategies were measured with a short version of Vermunt’s Inventory of Learning Styles. It was possible to replicate 5 processing and 5 regulation strategies. The higher order dimensions meaning directed learning style (relate and structure, concrete processing, critical processing) and reproduction directed learning style (memorize and repeat, analyze, self-regulation of contents, process and results, external regulation of the learning process) differed from Vermunt. The scales showed differences across groups, which is in line with previous research. Linear structural analysis showed that reproduction directed learning precedes meaning directed learning. Only meaning directed learning affected GPA, the influence of the two learning styles on ECs was not evidenced in this study. Contact hours influenced ECs, but this effect was tempered through its negative association with a heavy study load. The limitations, implications for practice, and directions for further research and development will be discussed in the round table.
DOCUMENT