Over the past decade, the maker movement and in its slipstream maker education have attained worldwide popularity among educators, politicians, and the media. Makers’ enthusiasm for creative design and construction, using old and new tools has proven contagious, and is worth exploration and critical reflection by the community of engineering and technology education (ETE). This chapter describes what has been said about “making” by philosophers and educators; what maker education is, and what is new and not so new about it; why it has gained momentum; what the evidence is about its effectiveness and its possible weaknesses; and how mainstream technology education may benefit from maker education. This chapter concludes with ideas for a research agenda.
Advances in information and communication technologies (ICTs) as well as modern pedagogical perspectives have created new possibilities to facilitate and support learning in higher education (HE). Emerging technologies bring opportunities to reconsider teaching and learning. New ideas and concepts about the educational use of new technologies transform the roles of teachers. In this context the key question of this study is: whether learning as part of a (virtual) community of practice supports teachers' technology professional development. Different learning alternatives such as distance learning, workplace learning as well as blended forms of learning will enhance lifelong learning which forces a rethinking of traditional forms of education. However, most institutions for education foster just-in-case learning while new technologies foster just-in-time learning. As a result of new learning perspectives and the potential pedagogical benefits of ICTs in educational contexts, teachers have to learn how to integrate new technologies in teaching and learning. It is recommended that teacher professional development should be situated in multiple learning settings in which learning is teacher-centred. Next to classroom settings and cross-institutional learning communities, virtual learning communities (VCoPs) are a significant source for learning. There is an overlap between the educational values of interned-based learning and social theories of learning such as Lave & Wenger's situated learning theory and Wenger's theory of communities of practice. Drawing upon these theories, offers a perspective on social learning that emphasizes social processes within (V)CoPs where community participants engage in collective learning and knowledge creation. The data discussed in this paper have been drawn from a cross institutional setting at Fontys University of Applied Sciences, The Netherlands. The data were collected and analysed according to a qualitative approach. The paper concludes that VCoPs are learning environments since these network-based learning communities push learners to take more control of their learning and provide tasks which are more contextualised and meaningful.
Docenten van Fontys Hogeschool Bedrijfsmanagement, Educatie en Techniek (BEnT) hebben geëxperimenteerd (Gorissen, 2014) met Flipping the Classroom in relatie tot de taxonomie van Bloom. Bij dit concept worden lage kennisniveaus uit deze taxonomie voor de les aangesproken en in de les worden hogere kennisniveaus aangesproken. Bij het herontwerp van hun lessen zijn docenten ondersteund door workshops, gegeven door Fontys Educatief Centrum (FEC). Het onderzoek geeft inzicht in de ervaringen van docenten als ze Flipping the Classroom toepassen en dient als input voor FEC zodat toekomstige workshops nog beter aansluiten bij behoeften van docenten. De hoofdvraag is: Wat zijn ervaringen van docenten en studenten van een HBO-instelling met het toepassen van de taxonomie van Bloom in relatie tot Flipping the Classroom? Hiervoor zijn drie deelonderzoeken uitgevoerd, te weten een kwalitatieve analyse van de lesvoorbereidingen en individuele interviews met docenten en een kwantitatief onderzoek onder studenten over de door hun gevolgde lessen via dit concept. Resultaten laten zien dat docenten het concept correct toepassen en ze hiervoor activerende werkvormen en ICT tools inzetten. Docenten zijn enthousiast over de toepassing ondanks dat herontwerp tijdrovend is. Studenten kenden het concept vooraf niet maar hérkenden het wel, zowel voorafgaand als in de les. Vanwege de lage respons onder studenten kan alleen een voorzichtige conclusie getrokken worden dat het concept bijdraagt aan betere verwerking van de leerstof en dat het vaker toegepast mag worden. De belangrijkste aanbevelingen zijn gericht op kennisdeling tussen docenten die dit concept (willen gaan) toepassen in het onderwijs en nader onderzoek naar de invloed op de leerprestaties van de studenten.
In the last decade, the automotive industry has seen significant advancements in technology (Advanced Driver Assistance Systems (ADAS) and autonomous vehicles) that presents the opportunity to improve traffic safety, efficiency, and comfort. However, the lack of drivers’ knowledge (such as risks, benefits, capabilities, limitations, and components) and confusion (i.e., multiple systems that have similar but not identical functions with different names) concerning the vehicle technology still prevails and thus, limiting the safety potential. The usual sources (such as the owner’s manual, instructions from a sales representative, online forums, and post-purchase training) do not provide adequate and sustainable knowledge to drivers concerning ADAS. Additionally, existing driving training and examinations focus mainly on unassisted driving and are practically unchanged for 30 years. Therefore, where and how drivers should obtain the necessary skills and knowledge for safely and effectively using ADAS? The proposed KIEM project AMIGO aims to create a training framework for learner drivers by combining classroom, online/virtual, and on-the-road training modules for imparting adequate knowledge and skills (such as risk assessment, handling in safety-critical and take-over transitions, and self-evaluation). AMIGO will also develop an assessment procedure to evaluate the impact of ADAS training on drivers’ skills and knowledge by defining key performance indicators (KPIs) using in-vehicle data, eye-tracking data, and subjective measures. For practical reasons, AMIGO will focus on either lane-keeping assistance (LKA) or adaptive cruise control (ACC) for framework development and testing, depending on the system availability. The insights obtained from this project will serve as a foundation for a subsequent research project, which will expand the AMIGO framework to other ADAS systems (e.g., mandatory ADAS systems in new cars from 2020 onwards) and specific driver target groups, such as the elderly and novice.
An important line of research within the Center of Expertise HAN BioCentre is the development of the nematode Caenorhabditis elegans as an animal testing replacement organism. In the context of this, us and our partners in the research line Elegant! (project number. 2014-01-07PRO) developed reliable test protocols, data analysis strategies and new technology, to determine the expected effects of exposure to specific substances using C. elegans. Two types of effects to be investigated were envisaged, namely: i) testing of possible toxicity of substances to humans; and ii) testing for potential health promotion of substances for humans. An important deliverable was to show that the observed effects in the nematode can indeed be translated into effects in humans. With regard to this aspect, partner Preventimed has conducted research in obesity patients during the past year into the effect of a specific cherry extract that was selected as promising on the basis of the study with C. elegans. This research is currently being completed and a scientific publication will have to be written. The Top Up grant is intended to support the publication of the findings from Elegant! and also to help design experimental protocols that enable students to become acquainted with alternative medical testing systems to reduce the use of laboratory animals during laboratory training.
Introduction The research group Biobased Resources & Energy (BRE) of Avans focusses on recovery of valuable building blocks from low-value solid and liquid residual streams from agriculture, households and industries. For the valorisation of these residual streams, BRE looks into different biological, chemical and mechanical processes. One of the main issues in the utilisation of residual streams is economic feasibility and the recovery of multiple resources from one residual stream. Using membrane technologies in combination with biological, chemical and/or mechanical processes could offer great opportunities. Central Research Question What is the applicability of membrane technologies for valorisation of different residual streams and is it possible to integrate membrane technology in current and new biorefining projects of research group BRE: Set-up In order to reach the goal of this postdoc, 4 research questions will be answered using literature search, experimentation and modelling: 1) What membrane methods are currently (commercially) available to enhance the results of current projects in research group BRE? 2) What are the essential technical parameters for membrane separation and how can these be optimized? 3) What is the economic impact of using membrane technology in recovery of valuable building blocks from residual streams? 4) What are the effects of using membranes instead of or complementary to currently used methods on the sustainability of valorisation of residual streams? Cooperation The postdoc and the research group BRE want to extend the contact and research cooperation with (regional) businesses and (applied) universities and support and facilitate the introduction and further development of membrane technologies in the curriculum of different Avans study programmes. This will be done via internships, minor projects (together with businesses) and development of study material for courses and trainings.