The Northern Netherlands is like many delta’s prone to a wide range of climate change effects. Given the region its long history with floods and adaptation, there are numerous initiatives to be found that tried to battle these effects. As part of the Climate Adaptation Week Groningen, an inventory was made of these initiatives. The most inspiring ones were coined ‘best practices’, and analysed in order to learn lessons. A distinction was made between 4 regional landscape types. The first consists of the coastline itself, where the effects of the rising sea level begin to show. The second covers the farmlands near the coastlines, where challenges such as salinisation and the loss of biodiversity prevail. A third landscape covers the historically compact cities, which have to deal with rising temperatures and heavy rainfall in increasingly limited spaces. The fourth and final landscape comprises the wetlands surrounding the cities, where the natural capacity to retain and store rainwater is undermined by its agriculture usage. Most of these challenges form a risk for maintaining a liveable region. The best practices that were collected show a diverse set of innovations and experiments, both on small and large scales. Three main characteristics could be distinguished that illustrate trends in climate adaptation practices. First, many best practices were aimed at restoring and embracing the natural capacity of the different landscapes, giving more and more room for the building with nature concept as part of building resilience. Second, climate adaptation is seldomly focussed on as the sole function of a spatial intervention, and is almost always part of integrated plans in which biodiversity, agriculture, recreation or other themes are prolonged with it. A third and last characteristic shows that many projects embed a strong focus on the historical context of places as a source of inspiration and cultural identity. The best practices show how different ways of adapting are emerging and can inspire planners across the world.
DOCUMENT
Traditional educational approaches often include disciplinary boundaries that operate in silo’s, not considering dynamic systems. These pedagogies are insufficient for preparing students to navigate real-world problems within rapidly evolving landscapes, potentially resulting in substandard learner outcomes and insufficient research outputs. This challenge is exacerbated by the increasing myriad of global pressures brought about by climate change, population growth, geopolitical changes and the need for sustainable development. To address these issues, higher education requires an innovative and integrative framework to educational practices that not only delivers adequate transdisciplinary education, but also fosters adaptive thinking and critical reflection. In an effort to enhance transdisciplinary education in Bachelor-level projects, Learning Community students are required to integrate a PESTEL-based approach in complex research activities. Through this integrated approach, we consider different values of PESTEL factors, as well as how education can navigate the complex relationship between subjective human needs and more objective interests. For this purpose, we suggest a step-by-step rebuilding of the current curriculum, towards an actionable knowledge base that contributes to the development of multi- and interdisciplinary processes. Student projects relate to the NWO-funded Floating Future project, of which the Hanze University of Applied Sciences is a partner. It provides an opportunity for students from different disciplines to contribute to collaborative research-based projects that aims to better understand the potential of large scale floating infrastructure and address challenges related to urban resilience, circularity, climate change and energy transition. This article explores the effectiveness of including the PESTEL-framework in the curriculum, and whether it contributes to achieving high quality research outputs that support transdisciplinary systems thinking. Since floating cities and hybrid infrastructure require future-proofing due to a rapidly changing climate, the Learning Community provides the ideal case study to apply this complex integrated approach together with students, researchers, experts, companies, and governments. We employ a mixed-method approach for data collection and analysis, comprising of qualitative and quantitative data. This includes an assessment of student awareness through the evaluation of weekly discussions and interactive presentations, as well as an evaluation of Bachelor projects. Findings indicate that PESTEL facilitates collective and collaborative interactions across different disciplines within the institution, but also provides students access to external experts and relevant stakeholders. This curricular strategy has therefore proven to support transdisciplinary thinking within a dynamic and complex system, and enabled students to appreciate diverse perspectives, thereby fostering a more holistic understanding of complex problems.
DOCUMENT
This essay is a contribution to the research project ‘From Prevention to Resilience’ funded by ZonMw. Motivated by the Covid-19 pandemic, this research project explored how public space and forms of civic engagement can contribute to working towards more resilient urban neighborhoods. The project engaged a community of practice (CoP) to inform the research and to disseminate and critically discuss research outcomes. This essay, and the bundle it is part of, is the outcome of one of these engagements. The authors of this specific essay were asked to offer their disciplinary perspective on a first version of the Human / Non-Human Public Spaces design perspective, at that time still titled Nexus Framework on Neighborhood Resilience (click here and a PDF of this version will be downloaded). The authors were asked to do so based on their field of expertise, being climate-resilient cities. The authors have written this essay in coordination with the research team. To grasp the content of this essay and to take lessons from it, we encourage readers to first get familiar with the first version of the design perspective.
MULTIFILE
Since the early work on defining and analyzing resilience in domains such as engineering, ecology and psychology, the concept has gained significant traction in many fields of research and practice. It has also become a very powerful justification for various policy goals in the water sector, evident in terms like flood resilience, river resilience, and water resilience. At the same time, a substantial body of literature has developed that questions the resilience concept's systems ontology, natural science roots and alleged conservatism, and criticizes resilience thinking for not addressing power issues. In this study, we review these critiques with the aim to develop a framework for power-sensitive resilience analysis. We build on the three faces of power to conceptualize the power to define resilience. We structure our discussion of the relevant literature into five questions that need to be reflected upon when applying the resilience concept to social–hydrological systems. These questions address: (a) resilience of what, (b) resilience at what scale, (c) resilience to what, (d) resilience for what purpose, and (e) resilience for whom; and the implications of the political choices involved in defining these parameters for resilience building or analysis. Explicitly considering these questions enables making political choices explicit in order to support negotiation or contestation on how resilience is defined and used.
DOCUMENT
Cities are becoming increasingly vulnerable for climate change and there is an urgent needto become more resilient. This research involves the development of the City climate scanRotterdam (September 2017) methodology to measure, map, scan and assess differentparameters that together give insight in the vulnerability of urban areas and neighborhoods.The research at recent City climate scan / Sketch your city in April 2018 used storytelling andsketching1 as main method to connect stakeholders, motivate action, evoke recognition in ajointly formulated goal, such as taking climate action. The city climate scan also involved thedevelopment of a set of measurement tools that can be applied in different urbanneighborhoods in a low-cost low-tech approach with teams of stakeholders andpractitioners. The city climate scan method was tested in different cities around the globe(Rotterdam, Manila and Cebu) in groups of young professionals and stakeholders in rapidurban appraisals.
DOCUMENT
Adaptive governance describes the purposeful collective actions to resist, adapt, or transform when faced with shocks. As governments are reluctant to intervene in informal settlements, community based organisations (CBOs) self-organize and take he lead. This study explores under what conditions CBOs in Mathare informal settlement, Nairobi initiate and sustain resilience activities during Covid-19. Study findings show that CBOs engage in multiple resilience activities, varying from maladaptive and unsustainable to adaptive, and transformative. Two conditions enable CBOs to initiate resilience activities: bonding within the community and coordination with other actors. To sustain these activities over 2.5 years of Covid-19, CBOs also require leadership, resources, organisational capacity, and network capacity. The same conditions appear to enable CBOs to engage in transformative activities. How-ever, CBOs cannot transform urban systems on their own. An additional condition, not met in Mathare, is that governments, NGOs, and donor agencies facilitate, support, and build community capacities. This is the peer reviewed version of the following article: Adaptive governance by community-based organisations: Community resilience initiatives during Covid‐19 in Mathare, Nairobi. which has been published in final form at doi/10.1002/sd.2682. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions
DOCUMENT
Over recent years, there has been an explosion in the number and diversity of projects undertaken to address urban resilience and climate proofing. Sharing the knowledge gained from these projects demands increasingly innovative and accessible methods. This paper details the outcomes of one such initiative: an interactive web-based map application that provides an entry point to gain detailed information of various ‘blue-green’ projects. The climatescan.nl has proven to be a successful tool in several international workshops, not only for field-based practitioners but also for those involved in teaching and research. Further upscaling is needed however if the full potential of such an application is to be achieved.
DOCUMENT
The phenomena of urbanization and climate change interact with the growing number of older people living in cities. One of the effects of climate change is an increased riverine flooding hazard, and when floods occur this has a severe impact on human lives and comes with vast economic losses. Flood resilience management procedures should be supported by a combination of complex social and environmental vulnerability assessments. Therefore, new methodologies and tools should be developed for this purpose. One way to achieve such inclusive procedures is by incorporating a social vulnerability evaluation methodology for environmental and flood resilience assessment. These are illustrated for application in the Polish city of Wrocław. Socio-environmental vulnerability mapping, based on spatial analyses using the poverty risk index, data on the ageing population, as well as the distribution of the areas vulnerable to floods, was conducted with use of a location intelligence system combining Geographic Information System (GIS) and Business Intelligence (BI) tools. The new methodology allows for the identification of areas populated by social groups that are particularly vulnerable to the negative effects of flooding. C 2018 SETAC Original Publication: Integr Environ Assess Manag 2018;14:592–597. DOI: https://doi.org/10.1002/ieam.4077
MULTIFILE
Societal resilience is an emerging paradigm. It refers to responses and strategies at the level of individuals, groups, organizations, and societies that are dealing with complex societal problems. At the same time, these responses contribute to innovative solutions that make society more resilient to current and future challenges. Societal resilience is, however, conceptually relatively undefined. This ambiguity is generally seen as problematic for scholarly work. In this chapter, the authors show that societal resilience is an important social concept because of its openness. To study resilience requires research methodologies that engage many actual stakeholders. Collaborating with societal stakeholders allows not only for co-generating knowledge of local relevance, but also stimulating a comprehensive and critical research approach. Therefore, the current openness of societal resilience does not constitute an undesirable theory gap. It enables the possibility of having plural perspectives based on the complex realities on the ground.
DOCUMENT
The current Covid-19 pandemic has underlined the importance of urban public spaces in achieving health and social well-being (Dobson, 2021; Poortinga et al., 2021), prompting policymakers and urban planners to rethink their approach to the design of these spaces. They now propagate adapting urban public spaces more directly to human needs (Suurenbroek et al., 2019), often at a neighbourhood level, while also embracing a more-than-human perspective that includes the well-being of the natural ecosystem at large (Maller, 2020; Houston et al., 2018). The latter becomes imperative as other shocks and stressors, such as climate change and biodiversity loss, are impending, straining urban spaces and their residents to show resilience in times of complex challenges. “Learning from Covid-19”, a need emerged for new design approaches for public spaces, contributing both to social and ecological resilience.This paper presents results from the research project "From Prevention to Resilience". It moves beyond merely responding to the pandemic by designing social and physical barriers in public space to prevent the virus from spreading. Instead, it seizes the opportunity to explore how an integrated design approach to public space could contribute to social and ecological resilience (Boon et al., 2021). The project, funded by the Dutch organization for health research and care innovation, is a collaboration between the chairs of Spatial Urban Transformation and Civic Interaction Design (AUAS) and an international partner consortium.This paper builds on our compiled database of design strategies addressing the Covid-crisis, expert sessions with a Community of Practitioners, and interviews with Dutch spatial design firms and municipalities. It first introduces a "Design Framework for Neighbourhood Resilience" and its core concepts. Next, it validates this framework through a research-by-design approach. Spatial and social design agencies applied the framework in real-life design cases in Amsterdam and allowed for its empirical grounding and practice-based development. Ultimately, the paper defines a design framework that builds resilience for the well-being of all urban inhabitants and initiates a dialogue between disciplines to address resilience integrally when designing public spaces and forms of civic engagement.ReferencesBoon, B., Nirschl, M., Gualtieri, G., Suurenbroek, F., & de Waal, M. (2021). Generating and disseminating intermediate-level knowledge on multiple levels of abstraction: An exploratory case in media architecture. Media Architecture Biennale 20, 189–193. https://doi.org/10.1145/3469410.3469430Dobson, J. (2021). Wellbeing and blue‐green space in post‐pandemic cities: Drivers, debates and departures. Geography Compass, 15. https://doi.org/10.1111/gec3.12593Houston, D., Hillier, J., MacCallum, D., Steele, W., & Byrne, J. (2018). Make kin, not cities! Multispecies entanglements and ‘becoming-world’ in planning theory. Planning Theory, 17(2), 190–212. https://doi.org/10.1177/1473095216688042 Maller, C. (2020). Healthy Urban Environments: More-than-Human Theories (1st ed.). Routledge, Taylor & Francis Group. https://www.routledge.com/Healthy-Urban-Environments-More-than-Human-Theories/Maller/p/book/9780367459031Poortinga, W., Bird, N., Hallingberg, B., Phillips, R., & Williams, D. (2021). The role of perceived public and private green space in subjective health and wellbeing during and after the first peak of the COVID-19 outbreak. Landscape and Urban Planning, 211, 104092. https://doi.org/10.1016/j.landurbplan.2021.104092 Suurenbroek, F., Nio, I., & de Waal, M. (2019). Responsive public spaces: exploring the use of interactive technology in the design of public spaces. Hogeschool van Amsterdam, Urban Technology.https://research.hva.nl/en/publications/responsive-public-spaces-exploring-the-use-of-interactive-technol-2
DOCUMENT