The period leading to and immediately after the release of the IPCC's fifth series of climate change assessments saw substantial efforts by climate change denial interests to portray anthropogenic climate change (ACC) as either unproven theory or a negligible contribution to natural climate variability, including the relationship between tourism and climate change. This paper responds to those claims by stressing that the extent of scientific consensus suggests that human-induced warming of the climate system is unequivocal. Second, it responds in the context of tourism research and ACC, highlighting tourism's significant contribution to greenhouse gas emissions, as well as climate change's potential impacts on tourism at different scales. The paper exposes the tactics used in ACC denial papers to question climate change science by referring to non-peer-reviewed literature, outlier studies, and misinterpretation of research, as well as potential links to think tanks and interest groups. The paper concludes that climate change science does need to improve its communication strategies but that the world-view of some individuals and interests likely precludes acceptance. The connection between ACC and sustainability illustrates the need for debate on adaptation and mitigation strategies, but that debate needs to be grounded in scientific principles not unsupported skepticism.
LINK
The adaptation of urbanised areas to climate change is currently one of the key challenges in the domain of urban policy. The diversity of environmental determinants requires the formulation of individual plans dedicated to the most significant local issues. This article serves as a methodic proposition for the stage of retrieving data (with the PESTEL and the Delphi method), systemic diagnosis (evaluation of risk and susceptibility), prognosis (goal trees, goal intensity map) and the formulation of urban adaptation plans. The suggested solution complies with the Polish guidelines for establishing adaptation plans. The proposed methodological approach guarantees the participation of various groups of stakeholders in the process of working on urban adaptation plans, which is in accordance with the current tendencies to strengthen the role of public participation in spatial management. https://doi.org/10.12911/22998993/81658
MULTIFILE
This paper adopts a problematising review approach to examine the extent of mitigating climate change research in the sustainable tourism literature. As climate change has developed into an existential global environmental crisis and while tourism's emissions are still increasing, one would expect it to be at the heart of sustainable tourism research. However, from a corpus of 2573 journal articles featuring ‘sustainable tourism’ in their title, abstract, or keywords, only 6.5% covered climate change mitigation. Our critical content analysis of 35 of the most influential papers found that the current methods, scope and traditions of tourism research hamper effective and in-depth research into climate change. Transport, the greatest contributor to tourism's emissions, was mostly overlooked, and weak definitions of sustainability were common. Tight system boundaries, lack of common definitions and incomplete data within tourism studies appear to hamper assessing ways to mitigate tourism's contribution to climate change.
MULTIFILE
The Dutch main water systems face pressing environmental, economic and societal challenges due to climatic changes and increased human pressure. There is a growing awareness that nature-based solutions (NBS) provide cost-effective solutions that simultaneously provide environmental, social and economic benefits and help building resilience. In spite of being carefully designed and tested, many projects tend to fail along the way or never get implemented in the first place, wasting resources and undermining trust and confidence of practitioners in NBS. Why do so many projects lose momentum even after a proof of concept is delivered? Usually, failure can be attributed to a combination of eroding political will, societal opposition and economic uncertainties. While ecological and geological processes are often well understood, there is almost no understanding around societal and economic processes related to NBS. Therefore, there is an urgent need to carefully evaluate the societal, economic, and ecological impacts and to identify design principles fostering societal support and economic viability of NBS. We address these critical knowledge gaps in this research proposal, using the largest river restoration project of the Netherlands, the Border Meuse (Grensmaas), as a Living Lab. With a transdisciplinary consortium, stakeholders have a key role a recipient and provider of information, where the broader public is involved through citizen science. Our research is scientifically innovative by using mixed methods, combining novel qualitative methods (e.g. continuous participatory narrative inquiry) and quantitative methods (e.g. economic choice experiments to elicit tradeoffs and risk preferences, agent-based modeling). The ultimate aim is to create an integral learning environment (workbench) as a decision support tool for NBS. The workbench gathers data, prepares and verifies data sets, to help stakeholders (companies, government agencies, NGOs) to quantify impacts and visualize tradeoffs of decisions regarding NBS.
INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.INXCES will develop new innovative technological methods for risk assessment and mitigation of extreme hydroclimatic events and optimization of urban water-dependent ecosystem services at the catchment level, for a spectrum of rainfall events. It is widely acknowledged that extreme events such as floods and droughts are an increasing challenge, particularly in urban areas. The frequency and intensity of floods and droughts pose challenges for economic and social development, negatively affecting the quality of life of urban populations. Prevention and mitigation of the consequences of hydroclimatic extreme events are dependent on the time scale. Floods are typically a consequence of intense rainfall events with short duration. In relation to prolonged droughts however, a much slower timescale needs to be considered, connected to groundwater level reductions, desiccation and negative consequences for growing conditions and potential ground – and building stability.INXCES will take a holistic spatial and temporal approach to the urban water balance at a catchment scale and perform technical-scientific research to assess, mitigate and build resilience in cities against extreme hydroclimatic events with nature-based solutions.INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.