The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing.
BackgroundTranscutaneous vagal nerve stimulation has analgesic potential and might be elicited by abdominally administered low-frequency vibrations. The objective was to study the safety and effect of a combination of music and abdominally administered low-frequency vibrations on pain intensity in elderly patients with chronic musculoskeletal pain.MethodsThis trial was an international multicenter, randomized controlled pilot study. Patients at age ≥ 65 years with musculoskeletal pain for ≥ 3 months and a daily pain score ≥ 4 out of 10 were recruited at three centers. They were randomized to receive either a combination of music and low-frequency (20–100 Hz) vibrations administered to the abdomen, or a combination with the same music but with higher frequency (200–300 Hz) vibrations administered to the abdomen. Low-frequency vibrations were expected to result in pain reduction measured with a numeric pain rating scale (NRS). Patients in both groups received eight treatments of the music combined with the vibrations in three weeks. Primary outcomes were safety (Serious Adverse Events) and pain intensity measured at baseline, after the last treatment and at six weeks follow-up. Multilevel linear model analyses were performed to study group and time effects.ResultsA total of 45 patients were analyzed according to intention-to-treat principle. After 344 treatments, 1 Adverse Event was found related to the intervention, while 13 Adverse Events were possibly related. A multilevel linear model showed that the interaction effect of group by time did not predict pain intensity (F[1, 45.93] = 0.002, p = 0.97) when comparing pain intensity at baseline, after the last treatment and at follow-up.ConclusionsThe combination of music and abdominally administered vibrations was found to be safe and well tolerated by the elderly patients. However, over time, neither the low-frequency treatment group nor the high-frequency treatment group provided clinically meaningful pain relief. There is no evidence that the low-frequency treatment elicited vagal nerve stimulation.
Numerous medical studies have shown the positive effects of forests on different aspects of human health. This study deals with the content of major terpenes in dominant coniferous species in Tara National Park, Serbia, in order to explore the potential for the development of a novel health tourism programme based on forest therapy. Main terpenes were analysed using a headspace-sam-pling technique coupled with gas-chromatography-mass spectrometry (Head-space-GC/MS). Nee-dles of fir and spruce growing in the vicinity of hiking trails were investigated for possibilities to perform such therapy. Major detected terpenes were α-cadinol and spathulenol previously de-scribed as antiviral, antitumor, antimicrobial and immunomodulatory agents. The results of the study were favourable and worked well with the existing walking infrastructure in the observed area of the Tara Mountain, as they act as invaluable resources for designing the structured forest bathing walks. The study not only adds to the knowledge in the environmental and public health realm but also to tourism and sustainability studies.