This study furthers game-based learning for circular business model innovation (CBMI), the complex, dynamic process of designing business models according to the circular economy principles. The study explores how game-play in an educational setting affects learning progress on the level of business model elements and from the perspective of six learning categories. We experimented with two student groups using our game education package Re-Organise. All students first studied a reader and a game role description and then filled out a circular business model canvas and a learning reflection. The first group, i.e., the game group, updated the canvas and the reflection in an interactive tutorial after gameplay. The control group submitted their updated canvas and reflection directly after the interactive tutorial without playing the game. The results were analyzed using text-mining and qualitative methods such as word co-occurrence and sentiment polarity. The game group created richer business models (using more waste processing technologies) and reflections with stronger sentiments toward the learning experience. Our detailed study results (i.e., per business model element and learning category) enhance understanding of game-based learning for circular business model innovation while providing directions for improving serious games and accompanying educational packages.
MULTIFILE
Our current take-make-dispose economic model faces a vital challenge as it extracts resources from the natural environment at faster rates than that the natural environment can replenish. A circular economy where businesses lower their negative impact on the natural environment by transitioning towards recycling business models (RBMs), one of the four principles of circularity, is suggested as a promising solution. For a RBM to become viable, collaboration among several stakeholders and across several industries is required. In addition, the RBM should be scalable to make a positive impact. Hence, developing RBMs is complex as organizations need to consider multiple principles imposed by the recycling, collaborative, and scalability dimensions of these business models (BMs). In addition, these principles often remain general and not actionable to the practitioners. Therefore, in this study, we researched the practical guidelines for viable RBMs that are also collaborative and scalable. The empirical setting is the reuse of textile fibers to develop biocomposite products. We studied three cases using a research-through-design approach. We contribute to the literature on RBMs by showing the six minimum practical guidelines for recyclability, collaboration, and scalability. We draw implications for within sector collaborations and advance the thought that lease constructs challenge the scalability of RBM.
MULTIFILE
Cahier #1 introduces our Hackable City-model and explains how it can be used to explore collaborative processes of citymaking in democratic societies. What new roles have emerged for citizens, (design) professionals and institutions, and how can collectives of citizens organized issues of communal concern interact with traditional institutions?
The textile industry is responsible for over 8% of global greenhouse gas emissions and 20% of the world’s wastewater, surpassing the emissions from international flights and shipping combined. In the European Union, textile purchases in 2020 led to around 270 kg of CO₂ emissions per person, yet only 1% of used clothing is recycled into new garments. The municipality of Groningen manages an estimated 950 kilotons of textile waste but is only able to collect, sort, and recycle 250 kilotons. To address these challenges, Textile Hub Groningen (THG) seeks to support small and medium-sized enterprises (SMEs) and stakeholders in creating circular textile value chains. However, designing circular value chains presents challenges, including conflicting interests, knowledge gaps on circular design principles, and inadequate tools for collaborative business model development. Potential stakeholders often find current tools too abstract and not conducive to collaboration, learning, or experimentation. As a result, circular value chains remain difficult to achieve from the perspective of individual stakeholders. Serious games have been employed to simulate and experiment with complex adaptive systems , . Research shows that well-designed playful learning enhances both learning and motivation, particularly when social elements are integrated . This project aims to answer the following research question: How can serious games be leveraged to design circular textile value chains in the region? The expected outcomes are: 1. Serious Game: Design, test, and deliver a serious game to facilitate the joint design of circular textile value chains. 2. Publications: Extract insights from the game’s design and evaluation, contributing to both academic and practical discussions. 3. Consortium for Follow-up: Mobilize partners and secure funding for future projects in related fields. Through game-based collaborative circular value chain and business model design experiences, this project overcomes barriers in designing viable circular value chains in the textile industry