In this paper we explore the influence of the physical and social environment (the design space) son the formation of shared understanding in multidisciplinary design teams. We concentrate on the creative design meeting as a microenvironment for studying processes of design communication. Our applied research context entails the design of mixed physical–digital interactive systems supporting design meetings. Informed by theories of embodiment that have recently gained interest in cognitive science, we focus on the role of interactive “traces,” representational artifacts both created and used by participants as scaffolds for creating shared understanding. Our research through design approach resulted in two prototypes that form two concrete proposals of how the environment may scaffold shared understanding in design meetings. In several user studies we observed users working with our systems in natural contexts. Our analysis reveals how an ensemble of ongoing social as well as physical interactions, scaffolded by the interactive environment, grounds the formation of shared understanding in teams. We discuss implications for designing collaborative tools and for design communication theory in general.
MULTIFILE
Collaborative Mixed Reality Environments (CMREs) enable designing Performative Mixed Reality Experiences (PMREs) to engage participants’ physical bodies, mixed reality environments, and technologies utilized. However, the physical body is rarely purposefully incorporated throughout such design processes, leaving designers seated behind their desks, relying on their previous know-how and assumptions. In contrast, embodied design techniques from HCI and performing arts afford direct corporeal feedback to verify and adapt experiential aesthetics within the design process. This paper proposes a performative prototyping method, which combines bodystorming methods with Wizard of Oz techniques with a puppeteering approach, using inside-out somaesthetic- and outside-in dramaturgical perspectives. In addition, it suggests an interdisciplinary vocabulary to share and evaluate PMRE experiences during and after its design collaboration. This method is exemplified and investigated by comparing two case studies of PMRE design projects in higher-art education using the existing Social VR platform NEOS VR adapted as a CMRE.
Our current take-make-dispose economic model faces a vital challenge as it extracts resources from the natural environment at faster rates than that the natural environment can replenish. A circular economy where businesses lower their negative impact on the natural environment by transitioning towards recycling business models (RBMs), one of the four principles of circularity, is suggested as a promising solution. For a RBM to become viable, collaboration among several stakeholders and across several industries is required. In addition, the RBM should be scalable to make a positive impact. Hence, developing RBMs is complex as organizations need to consider multiple principles imposed by the recycling, collaborative, and scalability dimensions of these business models (BMs). In addition, these principles often remain general and not actionable to the practitioners. Therefore, in this study, we researched the practical guidelines for viable RBMs that are also collaborative and scalable. The empirical setting is the reuse of textile fibers to develop biocomposite products. We studied three cases using a research-through-design approach. We contribute to the literature on RBMs by showing the six minimum practical guidelines for recyclability, collaboration, and scalability. We draw implications for within sector collaborations and advance the thought that lease constructs challenge the scalability of RBM.
MULTIFILE