Abstract: Existing frailty models have enhanced research and practice; however, none of the models accounts for the perspective of older adults upon defining and operationalizing frailty. We aim to propose a mixed conceptual model that builds on the integral model while accounting for older adults’ perceptions and lived experiences of frailty. We conducted a traditional literature review to address frailty attributes, risk factors, consequences, perceptions, and lived experiences of older adults with frailty. Frailty attributes are vulnerability/susceptibility, aging, dynamic, complex, physical, psychological, and social. Frailty perceptions and lived experience themes/subthemes are refusing frailty labeling, being labeled “by others” as compared to “self-labeling”, from the perception of being frail towards acting as being frail, positive self-image, skepticism about frailty screening, communicating the term “frail”, and negative and positive impacts and experiences of frailty. Frailty risk factors are classified into socio-demographic, biological, physical, psychological/cognitive, behavioral, and situational/environmental factors. The consequences of frailty affect the individual, the caregiver/family, the healthcare sector, and society. The mixed conceptual model of frailty consists of interacting risk factors, interacting attributes surrounded by the older adult’s perception and lived experience, and interacting consequences at multiple levels. The mixed conceptual model provides a lens to qualify frailty in addition to quantifying it.
BackgroundScientific software incorporates models that capture fundamental domain knowledge. This software is becoming increasingly more relevant as an instrument for food research. However, scientific software is currently hardly shared among and (re-)used by stakeholders in the food domain, which hampers effective dissemination of knowledge, i.e. knowledge transfer.Scope and approachThis paper reviews selected approaches, best practices, hurdles and limitations regarding knowledge transfer via software and the mathematical models embedded in it to provide points of reference for the food community.Key findings and conclusionsThe paper focusses on three aspects. Firstly, the publication of digital objects on the web, which offers valorisation software as a scientific asset. Secondly, building transferrable software as way to share knowledge through collaboration with experts and stakeholders. Thirdly, developing food engineers' modelling skills through the use of food models and software in education and training.
Despite the efforts of governments and firms, the construction industry is trailing other industries in labour productivity. Construction companies are interested in increasing their labour productivity, particularly when demand grows and construction firms cope with labour shortages. Off-site construction has proved to be a favourable policy to increase labour productivity. However, a complete understanding of the factors affecting construction labour productivity is lacking, and it is unclear which factors are influenced by off-site construction. This study developed a conceptual model describing how 15 factors influence the construction process and make a difference in labour productivity between off-site and on-site construction. The conceptual model shows that all 15 factors affect labour productivity in three ways: through direct effects, indirect effects and causal loops. The model is a starting point for further research to determine the impact of off-site construction on labour productivity.
MULTIFILE