To reduce greenhouse gas emissions, countries around the world are pursuing electrification policies. In residential areas, electrification will increase electricity supply and demand, which is expected to increase grid congestion at a faster rate than grids can be reinforced. Battery energy storage (BES) has the potential to reduce grid congestion and defer grid reinforcement, thus supporting the energy transition. But, BES could equally exacerbate grid congestion. This leads to the question: What are the trade-offs between different battery control strategies, considering battery performance and battery grid impacts? This paper addresses this question using the battery energy storage evaluation method (BESEM), which interlinks a BES model with an electricity grid model to simulate the interactions between these two systems. In this paper, the BESEM is applied to a case study, wherein the relative effects of different BES control strategies are compared. The results from this case study indicate that batteries can reduce grid congestion if they are passively controlled (i.e., constraining battery power) or actively controlled (i.e., overriding normal battery operations). Using batteries to reduce congestion was found to reduce the primary benefits provided by the batteries to the battery owners, but could increase secondary benefits. Further, passive battery controls were found to be nearly as effective as active battery controls at reducing grid congestion in certain situations. These findings indicate that the trade-offs between different battery control strategies are not always obvious, and should be evaluated using a method like the BESEM.
DOCUMENT
AbstractBackground It is crucial to balance load and recovery during short-term match congestion in basketball. Currently, it is unknown if higher total load during short-term match congestion lead to higher injury and illness rates.Objective Aim of this study was to compare injuries and illnesses and total weekly load during 1-match weeks compared to ≥2-match weeks in basketball.Design During this prospective observational study, players were monitored during a full season.Setting Two basketball teams participating in the domestic-league championship, CUP matches and Euro league were followed.Patients (or Participants) Sixteen elite male professional basketball players participated in this study. Characteristics of the players were (mean±SD): age 24.8±2.0 years, height 195.8±7.5 cm, weight 94.8±14.0 kg, body fat 11.9±5.0% and VO2max 51.9±5.3 mL·kg−1·min−1.Interventions (or Assessment of Risk Factors) In total 47 matches by basketball team A (9 players) and 41 matches by team B (7 players) were performed throughout the season. All training sessions and matches were executed as prescribed by the training and coaching staff without interference or manipulation.Main Outcome Measurements The Oslo Sports Trauma Research Center (OSTRC) Questionnaire on Health Problems was used to collect data on injuries and illnesses on a weekly base. Furthermore, players filled in s-RPE and duration for each training and match. Prevalence’s, severity scores, time-loss and total weekly load were compared for 1-match weeks and ≥2-match weeks. The data were analyzed using multi-level modeling.Results Prevalence of injuries and illnesses were 18.1% and 4.6% for 1-match weeks and 17.2% and 3.3% for ≥2-match weeks. Severity scores and time-loss were not significantly different for 1-match weeks compared to ≥2-match weeks. Total weekly load was lower during ≥2-match weeks compared to 1-match weeks.Conclusions No significant differences for injuries and illnesses were observed between 1-match weeks and ≥2-match weeks. Coaches appeared to reduce training load to compensate for multiple matches during short-term match congestion.
DOCUMENT
In elite basketball, players are exposed to intensified competition periods when participating in both national and international competitions. How coaches manage training between matches and in reference to match scheduling for a full season is not yet known. Purpose: First, to compare load during short-term match congestion (ie, ≥2-match weeks) with regular competition (ie, 1-match weeks) in elite male professional basketball players. Second, to determine changes in well-being, recovery, neuromuscular performance, and injuries and illnesses between short-term match congestion and regular competition. Methods: Sixteen basketball players (age 24.8 [2.0] y, height 195.8 [7.5] cm, weight 94.8 [14.0] kg, body fat 11.9% [5.0%], VO2max 51.9 [5.3] mL·kg−1·min−1) were monitored during a full season. Session rating of perceived exertion (s-RPE) was obtained, and load was calculated (s-RPE × duration) for each training session or match. Perceived well-being (fatigue, sleep quality, general muscle soreness, stress levels, and mood) and total quality of recovery were assessed each training day. Countermovement jump height was measured, and a list of injuries and illnesses was collected weekly using the adapted Oslo Sports Trauma Research Center Questionnaire on Health Problems. Results: Total load (training sessions and matches; P
DOCUMENT
During intensified phases of competition, attunement of exertion and recovery is crucial to maintain performance. Although a mismatch between coach and player perceptions of training load is demonstrated, it is unknown if these discrepancies also exist for match exertion and recovery. Purpose: To determine match exertion and subsequent recovery and to investigate the extent to which the coach is able to estimate players’ match exertion and recovery. Methods: Rating of perceived exertion (RPE) and total quality of recovery (TQR) of 14 professional basketball players (age 26.7 ± 3.8 y, height 197.2 ± 9.1 cm, weight 100.3 ± 15.2 kg, body fat 10.3% ± 3.6%) were compared with observations of the coach. During an in-season phase of 15 matches within 6 wk, players gave RPEs after each match. TQR scores were filled out before the first training session after the match. The coach rated observed exertion (ROE) and recovery (TQ-OR) of the players. Results: RPE was lower than ROE (15.6 ± 2.3 and 16.1 ± 1.4; P = .029). Furthermore, TQR was lower than TQ-OR (12.7 ± 3.0 and 15.3 ± 1.3; P < .001). Correlations between coach- and player-perceived exertion and recovery were r = .25 and r = .21, respectively. For recovery within 1 d the correlation was r = .68, but for recovery after 1–2 d no association existed. Conclusion: Players perceive match exertion as hard to very hard and subsequent recovery reasonable. The coach overestimates match exertion and underestimates degree of recovery. Correspondence between coach and players is thus not optimal. This mismatch potentially leads to inadequate planning of training sessions and decreases in performance during fixture congestion in basketball.
DOCUMENT
COVID-19 arrived in the world suddenly and unexpectedly. It caused major disruptions at economical, operational and other levels. In the case of flight traffic, the operations were reduced to 10% of their original levels. The question after COVID-19 is how to restart the operations and how to keep the balance between safety and capacity. In this paper we present an analysis using simulation techniques for understanding the impact in a security area of an important airport in Latin America; the airport of Mexico City. The results allow to illustrate the potential congestion given by the implemented covid-19 restriction, even when the traffic recovers only by 25% of the pre-covid-19 traffic. The congestion can be mitigated by applying some layout changes (snake queue vs parallel queue) and when more capacity is added to the system (extra security line). The results will raise situational awareness for airport stakeholders when implementing the actions suggested by different international institutions like WHO, IATA or ICAO.
DOCUMENT
The airport of Mexico City has been declared saturated for most of the day. For that reason, the Mexican government announced a couple of years ago the construction of a completely new one which is supposed to be operative in 2020 in its first phase. However, the technical issues and the economic downturn in the country jeopardise the project; for that reason, it is important to have alternatives that allow investing in a progressive fashion so that the investments are not lost or end up in useless infrastructure like the ones that have taken place in other parts of the world. The current work presents a simulation-based study of the alternative of using one of the runways of the new airport in a remote fashion in case the original project is delayed or even cancelled. The results indicate that the proposed infrastructure alleviates the congestion problem in the current airport, and at the same time allows the traffic growth with performance indicators similar to airports that have remote runways as in the case of Schiphol in The Netherlands.
DOCUMENT
From a circular standpoint it is interesting to reuse as much as possible construction and demolition waste (CDW) into new building projects. In most cases CDW will not be directly reusable and will need to be processed and stored first. In order to turn this into a successful business case CDW will need to be reused on a large scale. In this paper we present the concept of a centralized and coordinated location in the City of Utrecht where construction and demolition waste is collected, sorted, worked, stored for reuse, or shipped elsewhere for further processing in renewed materials. This has expected advantages for the amount of material reuse, financial advantages for firms and clients, generating employability in the logistics and processing of materials, optimizing the transport and distribution of materials through the city, and thus the reduction of emissions and congestion. In the paper we explore the local facility of a Circular Hub, and the potential effects on circular reuse, and other effects within the City of Utrecht.
DOCUMENT
from the article: "Abstract The way in which construction logistics is organised has considerable impact on production flow, transportation efficiency, greenhouse gas emissions and congestion, particularly in urban areas such as city centres. In cities such as London and Amsterdam municipalities have issued new legislation and stricter conditions for vehicles to be able to access cities and city centres in particular. Considerate clients, public as well private, have started developing tender policies to encourage contractors to reduce the environmental impact of construction projects. This paper reports on an ongoing research project applying and assessing developments in the field of construction logistics in the Netherlands. The cases include contractors and third party logistics providers applying consolidation centres and dedicated software solutions to increase transportation efficiency. The case show various results of JIT logistics management applied to urban construction projects leading to higher transportation efficiencies, and reduced environmental impact and increased production efficiency on site. The data collections included to-site en on-site observations, measurement and interviews. The research has shown considerable reductions of vehicles to deliver goods and to transport workers to site. In addition the research has shown increased production flow and less waste such as inventory, waiting and unnecessary motion on site."
DOCUMENT
City logistics is one of the causes of today's road congestion in our cities, but at the same time its efficiency is affected by the traffic problems. The driving behaviour and mission strategies used by vans and lorries operating in urban areas usually does not exploit modern infomobility solutions. CityLog, a project co-funded by the European Commission within the 7th Framework Programme, aims at increasing the sustainability and the efficiency of urban goods deliveries through an adaptive and integrated mission management and by innovative vehicle features. More particularly, CityLog integrates a wide range of logistics-oriented infomobility services that include an optimized pre-trip planner, a new type of navigation system based on enhanced maps and a last mile parcel tracking service to avoid unsuccessful deliveries. © 2011 IEEE.
LINK
Mexico City airport is located close to the center ofthe city and is Mexico’s busiest airport which is consideredcongested. One of the consequences of airport congestion areflight delays which in turn decrease costumer’s satisfaction. Airtraffic control has been using a ground delay program as a toolfor alleviating the congestion problems, particularly in the mostcongested slots of the airport. This paper uses a model-basedapproach for analyzing the effectiveness of the ground delayprogram and rules. The results show that however the rulesapplied seem efficient, there is still room for improvement inorder to make the traffic management more efficient.
MULTIFILE