This study examines the effect of seat assignment strategies on the transfer time of connecting passengers at a hub airport. Passenger seat allocation significantly influences disembarkation times, which can increase the risk of missed connections, particularly in tight transfer situations. We propose a novel seat assignment strategy that allocates seats to nonpaying passengers after check-in, prioritising those with tight connections. This approach diverges from traditional methods focused on airline turnaround efficiency, instead optimizing for passenger transfer times and reducing missed connections. Our simulation, based on real-world data from Paris-Charles de Gaulle airport, demonstrates that this passenger-centric model decreases missed connections by 12%, enhances service levels, reduces airline compensation costs, and improves airport operations. The model accounts for variables such as seat occupancy,luggage, and passenger type (e.g., business, leisure) and is tested under various scenarios, including air traffic delays.
MULTIFILE
This study presents a model-based analysis of the groundconnectivity performance of the future Santa Lucia-Mexico City multi-airport system. The plan of the currentgovernment is to connect the two airports by a dedicatedline, either by bus or other transport so that passengersand airlines can get the benefit of a coordinatedoperation. Performance indicators such as minimumconnecting time, vehicle utilization and passengerwaiting time are used to evaluate the future performance.Results reveal that when all passengers are allowed to usethe connection, a big number of vehicles are required forproviding a good level of service while in the case of arestricted use to only transfer passengers the operationwith Bus would have a good performance.
DOCUMENT
Two key air pollutants that affect asthma are ozone and particle pollution. Studies show a direct relationship between the number of deaths and hospitalizations for asthma and increases of particulate matter in the air, including dust, soot, fly ash, diesel exhaust particles, smoke, and sulfate aerosols. Cars are found to be a primary contributor to this problem. However, patient awareness of the link is limited. This chapter begins with a general discussion of vehicular dependency or ‘car culture’, and then focuses on the discussion of the effects of air pollution on asthma in the Netherlands. I argue that international organizations and patient organizations have not tended to put pressure on air-control, pollution-control or environmental standards agencies, or the actual polluters. While changes in air quality and the release of greenhouse gases are tied to practices like the massive corporate support for the ongoing use of motor vehicles and the increased prominence of ‘car culture’ globally, patient organizations seem more focused on treating the symptoms rather than addressing the ultimate causes of the disease. Consequently, I argue that to fully address the issue of asthma the international health organizations as well as national health ministries, patient organizations, and the general public must recognize the direct link between vehicular dependency and asthma. The chapter concludes with a recommendation for raising environmental health awareness by explicitly linking the vehicular dependency to the state of poor respiratory health. Strategic policy in the Netherlands then should explicitly link the present pattern of auto mobility to public health. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118786949 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE