Blue spaces in cities are often regarded as adaptation measures that effectively reduce urban heat. Therefore, urban professionals like to integrate blue infrastructures in climate resilient designs. However, several studies indicated that the cooling effect of small water bodies is often small or absent. This poster will inform about the actual cooling potential of small blue spaces such as rivers, ponds, canals and fountains. Simulation results from the REALCOOL project will be complemented with measurements and questionnaire surveys from other studies and relevant scientific literature to illustrate the negligible cooling impact of small blue spaces for climate resilient urban design.
At a time when the population is ageing and most people choose to live in their own home for as long as possible, it is important to consider various aspects of supportive and comfortable environments for housing. This study, conducted in South Australia, aims to provide information about the links between the type of housing in which older people live, the weather and occupants’ heating and cooling behaviours as well as their health and well-being. The study used a Computer-Assisted Telephone Interviewing (CATI) system to survey 250 people aged 65 years and over who lived in their own home. The respondents were recruited from three regions representing the three climate zones in South Australia: semi-arid, warm temperate and temperate. The results show that while the majority of respondents reported being in good health, many lived in dwellings with minimal shading and no wall insulation and appeared to rely on the use of heaters and coolers to achieve thermally comfortable conditions. Concerns over the cost of heating and cooling were shared among the majority of respondents and particularly among people with low incomes. Findings from this study highlight the importance of providing information to older people, carers, designers and policy makers about the interrelationships between weather, housing design, heating and cooling behaviours, thermal comfort, energy use and health and well-being, in order to support older people to age in place independently and healthily. https://doi.org/10.1016/j.buildenv.2019.03.023 LinkedIn: https://www.linkedin.com/in/jvhoof1980/
MULTIFILE
Small urban water bodies, like ponds or canals, are often assumed to cool their surroundings during hot periods, when water bodies remain cooler than air during daytime. However, during the night they may be warmer. Sufficient fetch is required for thermal effects to reach a height of 1–2 m, relevant for humans. In the ‘Really cooling water bodies in cities’ (REALCOOL) project thermal effects of typical Dutch urban water bodies were explored, using ENVI-met 4.1.3. This model version enables users to specify intensity of turbulent mixing and light absorption of the water, offering improved water temperature simulations. Local thermal effects near individual water bodies were assessed as differences in air temperature and Physiological Equivalent Temperature (PET). The simulations suggest that local thermal effects of small water bodies can be considered negligible in design practice. Afternoon air temperatures in surrounding spaces were reduced by typically 0.2 °C and the maximum cooling effect was 0.6 °C. Typical PET reduction was 0.6 °C, with a maximum of 1.9 °C. Night-time warming effects are even smaller. However, the immediate surroundings of small water bodies can become cooler by means of shading from trees, fountains or water mists, and natural ventilation. Such interventions induce favorable changes in daytime PET.
Op dit moment wordt elektronica veelal actief gekoeld door middel van een geconditioneerde luchtstroom die geforceerd langs een heat sink wordt gevoerd. Het conditioneren van deze luchtstroom kost veel energie en de benodigde luchtbehandelingsapparatuur vergt grondstoffen. Als voorbeeld kan een datacenter dienen waarbij tot wel 30 % van de benodigde energie wordt gebruikt voor het koelen van de elektronica. Dit projectvoorstel richt zich op onderzoek naar een alternatieve methode voor het koelen van elektronica. Het gaat daarbij om het passief koelen van elektronica d.m.v. een gesloten vloeistofcircuit op basis van natuurlijke convectie. Een 3D geprinte heat sink geeft de warmte af aan een circulerende vloeistof. Via een hoger gelegen warmtewisselaar geeft deze vloeistof de warmte aan de buitenlucht af. Deze passieve manier van koelen bespaart energie en grondstoffen en kent andere voordelen die in de inleiding worden genoemd. Fontys heeft een experimentele opstelling gebouwd waarmee testen zijn gedaan. De heat sinks worden voor het experiment 3D geprint in metaal. Het printen biedt de vormvrijheid die vaak nodig is voor een efficiënt ontwerp dat in staat is het vermogen af te voeren. Het onderzoek bij Fontys is uitgevoerd op door het bedrijfsleven aangeleverde cases. De resultaten wijzen uit dat deze passieve manier van koelen in de aangereikte gevallen werkt. Het betreft echter een experimentele opstelling, met maximaal 3 warmtebronnen en beperkte vermogens. Middels dit project Cooling of Electronics by Natural Convection (CENACO) wil Fontys samen met de consortiumpartners onderzoeken of de methode ook op industriële schaal toepasbaar is. Er moeten reële specificaties worden gedefinieerd. De opstelling moet worden opgeschaald. Voor een juist ontwerp zijn thermal-flow simulaties en onderzoek naar de mogelijkheden om heat sinks te printen nodig.
The key societal problem addressed by the EmPowerED consortium is the urgent need to accelerate and scale up the development of Positive Energy Districts (PEDs). Carbon neutral heating and cooling is a core element of the design of Positive Energy Districts (PEDS). However, many Dutch heat transition projects run behind schedule and are not compatible with this future vision of PEDs, making the heat transition a key factor in PED realization and upscaling. In this heat transition and the transition to PEDs, citizen engagement and support is a key societal factor and citizens need to be an integral part of the decision-making process on the realization of PEDs. Furthermore, technical, regulatory and financial uncertainties hamper the ability of decision makers to create PED system designs that have citizen support. Such system designs require a deep understanding of the relevant social, spatial, governance, legal, financial, and technical factors, and their interactions in PED system designs.
Zuyd University and partners will develop novel coatings that contribute to a reduction in energy consumption of houses and buildings. The built environment currently consumes 46% of all energy, mainly for heating and cooling. A strong reduction is required as part of the transition towards sustainable energy. This is expressed by ambitious targets set by the Parkstad region, which has set itself the target to be energy neutral in 2040. For the Window of the Future Zuyd University (lectoraat Nanostructured Materials) and DWI (post-doc) aims to develop infrared regulating coatings that keep the heat inside in winter and outside in summer. These coatings are expected to strongly contribute to reduction of energy consumption. We will develop coating materials for application on glass windows, which are transparent for visible light to allow maximal daylight entering the building, and simultaneously regulate the transmission and reflection of IR heat. Kriya and Physee (SMEs) will advise Zuyd on technical and economic challenges related to the development of IR regulating glass windows. OMT Solutions (SME) and SGS Intron will advise on characterization and the performance validation. The need for such windows is confirmed by TNO/The Brightlands Materials Center as central challenge in their Optoelectronics program. They contribute largely to this project. Large demonstrator windows will be coated, and installed in test houses for real-life testing and quantification of the energy reduction. Zuyd (lectoraat Solar Energy in the Built Environment) will quantify the impact of smart IR regulating windows on the energy transition by comparing their impact to other available technologies, e.g. solar cells. In this quantification, Zuyd will focus on the Parkstad region. Together with Parkstad and Maastricht University (Ph.D. student), Zuyd will also quantify the socio-economic impact, and promote the societal acceptance of smart IR regulating windows.