An illustrative non-technical review was published on Towards Data Science regarding our recent Journal paper “Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning”.While new technologies have changed almost every aspect of our lives, the construction field seems to be struggling to catch up. Currently, the structural condition of a building is still predominantly manually inspected. In simple terms, even nowadays when a structure needs to be inspected for any damage, an engineer will manually check all the surfaces and take a bunch of photos while keeping notes of the position of any cracks. Then a few more hours need to be spent at the office to sort all the photos and notes trying to make a meaningful report out of it. Apparently this a laborious, costly, and subjective process. On top of that, safety concerns arise since there are parts of structures with access restrictions and difficult to reach. To give you an example, the Golden Gate Bridge needs to be periodically inspected. In other words, up to very recently there would be specially trained people who would climb across this picturesque structure and check every inch of it.
LINK
Masonry structures represent the highest proportion of building stock worldwide. Currently, the structural condition of such structures is predominantly manually inspected which is a laborious, costly and subjective process. With developments in computer vision, there is an opportunity to use digital images to automate the visual inspection process. The aim of this study is to examine deep learning techniques for crack detection on images from masonry walls. A dataset with photos from masonry structures is produced containing complex backgrounds and various crack types and sizes. Different deep learning networks are considered and by leveraging the effect of transfer learning crack detection on masonry surfaces is performed on patch level with 95.3% accuracy and on pixel level with 79.6% F1 score. This is the first implementation of deep learning for pixel-level crack segmentation on masonry surfaces. Codes, data and networks relevant to the herein study are available in: github.com/dimitrisdais/crack_detection_CNN_masonry.
DOCUMENT
Manual crack inspection is labor-intensive and impractical at scale, prompting a shift toward AI-based segmentation methods. We present a novel crack segmentation model that leverages the Segment Anything Model 2 (SAM 2) through transfer learning to detect cracks on masonry surfaces. Unlike prior approaches that rely on encoders pretrained for image classification, we fine-tune SAM 2, originally trained for segmentation tasks, by freezing its Hiera encoder and FPN neck, while adapting its prompt encoder, LoRA matrices, and mask decoder for the crack segmentation task. No prompt input is used during training to avoid detection overhead. Our aim is to increase robustness to noise and enhance generalizability across different surface types. This work demonstrates the potential of foundational segmentation models in enabling more reliable and field-ready AI-based crack detection tools.
DOCUMENT
Post-earthquake structural damage shows that wall collapse is one of the most common failure mechanisms in unreinforced masonry buildings. It is expected to be a critical issue also in Groningen, located in the northern part of the Netherlands, where human-induced seismicity has become an uprising problem in recent years. The majority of the existing buildings in that area are composed of unreinforced masonry; they were not designed to withstand earthquakes since the area has never been affected by tectonic earthquakes. They are characterised by vulnerable structural elements such as slender walls, large openings and cavity walls. Hence, the assessment of unreinforced masonry buildings in the Groningen province has become of high relevance. The abovementioned issue motivates engineering companies in the region to research seismic assessments of the existing structures. One of the biggest challenges is to be able to monitor structures during events in order to provide a quick post-earthquake assessment hence to obtain progressive damage on structures. The research published in the literature shows that crack detection can be a very powerful tool as an assessment technique. In order to ensure an adequate measurement, state-of-art technologies can be used for crack detection, such as special sensors or deep learning techniques for pixel-level crack segmentation on masonry surfaces. In this project, a new experiment will be run on an in-plane test setup to systematically propagate cracks to be able to detect cracks by new crack detection tools, namely digital crack sensor and vision-based crack detection. The validated product of the experiment will be tested on the monument of Fraeylemaborg.
Post-earthquake structural damage shows that wall collapse is one of the most common failure mechanisms in unreinforced masonry buildings. It is expected to be a critical issue also in Groningen, located in the northern part of the Netherlands, where human-induced seismicity has become an uprising problem in recent years. The majority of the existing buildings in that area are composed of unreinforced masonry; they were not designed to withstand earthquakes since the area has never been affected by tectonic earthquakes. They are characterised by vulnerable structural elements such as slender walls, large openings and cavity walls. Hence, the assessment of unreinforced masonry buildings in the Groningen province has become of high relevance. The abovementioned issue motivates engineering companies in the region to research seismic assessments of the existing structures. One of the biggest challenges is to be able to monitor structures during events in order to provide a quick post-earthquake assessment hence to obtain progressive damage on structures. The research published in the literature shows that crack detection can be a very powerful tool as an assessment technique. In order to ensure an adequate measurement, state-of-art technologies can be used for crack detection, such as special sensors or deep learning techniques for pixel-level crack segmentation on masonry surfaces. In this project, a new experiment will be run on an in-plane test setup to systematically propagate cracks to be able to detect cracks by new crack detection tools, namely digital crack sensor and vision-based crack detection.