BACKGROUND: Critically ill patients receiving invasive ventilation are at risk of sputum retention. Mechanical insufflation-exsufflation (MI-E) is a technique used to mobilise sputum and optimise airway clearance. Recently, interest has increased in the use of mechanical insufflation-exsufflation for invasively ventilated critically ill adults, but evidence for the feasibility, safety and efficacy of this treatment is sparse. The aim of this scoping review is to map current and emerging evidence on the feasibility, safety and efficacy of MI-E for invasively ventilated adult patients with the aim of highlighting knowledge gaps and identifying areas for future research. Specific research questions aim to identify information informing indications and contraindications to the use of MI-E in the invasively ventilated adult, MI-E settings used, outcome measures reported within studies, adverse effects reported and perceived barriers and facilitators to using MI-E reported.METHODS: We will search electronic databases MEDLINE, EMBASE, CINAHL using the OVID platform, PROSPERO, The Cochrane Library, ISI Web of Science and the International Clinical Trials Registry Platform. Two authors will independently screen citations, extract data and evaluate risk of bias using the Mixed Methods Appraisal Tool. Studies included will present original data and describe MI-E in invasively ventilated adult patients from 1990 onwards. Our exclusion criteria are studies in a paediatric population, editorial pieces or letters and animal or bench studies. Search results will be presented in a PRISMA study flow diagram. Descriptive statistics will be used to summarise quantitative data. For qualitative data relating to barriers and facilitators, we will use content analysis and the Theoretical Domains Framework (TDF) as a conceptual framework. Additional tables and relevant figures will present data addressing our research questions.DISCUSSION: Our findings will enable us to map current and emerging evidence on the feasibility, safety and efficacy of MI-E for invasively ventilated critically ill adult patients. These data will provide description of how the technique is currently used, support healthcare professionals in their clinical decision making and highlight areas for future research in this important clinical area.
DOCUMENT
BACKGROUND: Early mobilization has been proven effective for patients in intensive care units (ICUs) to improve functional recovery. However, early mobilization of critically ill, often mechanically ventilated, patients is cumbersome because of the attachment to tubes, drains, monitoring devices and muscle weakness. A mobile treadmill with bodyweight support may help to initiate mobilization earlier and more effectively. The aim of this study is to assess the effectiveness of weight-supported treadmill training in critically ill patients during and after ICU stay on time to independent functional ambulation. METHODS: In this randomized controlled trial, a custom-built bedside body weight-supported treadmill will be used and evaluated. Patients are included if they have been mechanically ventilated for at least 48 hours, are able to follow instructions, have quadriceps muscle strength of Medical Research Council sum-score 2 (MRC 2) or higher, can sit unsupported and meet the safety criteria for physical exercise. Exclusion criteria are language barriers, no prior walking ability, contraindications for physiotherapy or a neurological condition as reason for ICU admission. We aim to include 88 patients and randomize them into either the intervention or the control group. The intervention group will receive usual care plus bodyweight-supported treadmill training (BWSTT) daily. The BWSSTT consists of walking on a mobile treadmill while supported by a harness. The control group will receive usual care physiotherapy treatment daily consisting of progressive activities such as bed-cycling and active functional training exercises. In both groups, we will aim for a total of 40 minutes of physiotherapy treatment time every day in one or two sessions, as tolerated by the patient. The primary outcome is time to functional ambulation as measured in days, secondary outcomes include walking distance, muscle strength, status of functional mobility and symptoms of post-traumatic stress. All measurements will be done by assessors who are blinded to the intervention on the regular wards until hospital discharge. DISCUSSION: This will be the first study comparing the effects of BWSTT and conventional physiotherapy for critically ill patients during and after ICU stay. The results of this study contribute to a better understanding of the effectiveness of early physiotherapy interventions for critically ill patients. TRIAL REGISTRATION: Dutch Trial Register (NTR) ID: NL6766. Registered at 1 December 2017.
DOCUMENT
PurposeEarly mobilization of critically ill patients improves functional recovery, but is often hampered by tubes, drains, monitoring devices and muscular weakness. A mobile treadmill with bodyweight support facilitates early mobilization and may shorten recovery time to independent ambulation as compared to usual care physiotherapy alone.Materials and methodsSingle center RCT, comparing daily bodyweight supported treadmill training (BWSTT) with usual care physiotherapy, in patients who had been or were mechanically ventilated (≥48 h) with ≥MRC grade 2 quadriceps muscle strength. BWSTT consisted of daily treadmill training in addition to usual care physiotherapy (PT). Primary outcome was time to independent ambulation measured in days, using the Functional Ambulation Categories (FAC-score: 3). Secondary outcomes included hospital length of stay and serious adverse events.ResultsThe median (IQR) time to independent ambulation was 6 (3 to 9) days in the BWSTT group (n = 19) compared to 11 (7 to 23) days in the usual care group (n = 21, p = 0.063). Hospital length of stay was significantly different in favour of the BWSTT group (p = 0.037). No serious adverse events occurred.InterpretationBWSTT seems a promising intervention to enhance recovery of ambulation and shorten hospital length of stay of ICU patients, justifying a sufficiently powered multicenter RCT.Trial registration number: Dutch Trial Register ID: NTR6943.
DOCUMENT