Abstract: Hypertension is both a health problem and a financial one globally. It affects nearly 30 % of the general population. Elderly people, aged ≥65 years, are a special group of hypertensive patients. In this group, the overall prevalence of the disease reaches 60 %, rising to 70 % in those aged ≥80 years. In the elderly population, isolated systolic hypertension is quite common. High systolic blood pressure is associated with an increased risk of cardiovascular disease, cerebrovascular disease, peripheral artery disease, cognitive impairment and kidney disease. Considering the physiological changes resulting from ageing alongside multiple comorbidities, treatment of hypertension in elderly patients poses a significant challenge to treatment teams. Progressive disability with regard to the activities of daily life, more frequent hospitalisations and low quality of life are often seen in elderly patients. There is discussion in the literature regarding frailty syndrome associated with old age. Frailty is understood to involve decreased resistance to stressors, depleted adaptive and physiological reserves of a number of organs, endocrine dysregulation and immune dysfunction. The primary dilemma concerning frailty is whether it should only be defined on the basis of physical factors, or whether psychological and social factors should also be included. Proper nutrition and motor rehabilitation should be prioritised in care for frail patients. The risk of orthostatic hypotension is a significant issue in elderly patients. It results from an autonomic nervous system dysfunction and involves maladjustment of the cardiovascular system to sudden changes in the position of the body. Other significant issues in elderly patients include polypharmacy, increased risk of falls and cognitive impairment. Chronic diseases, including hypertension, deteriorate baroreceptor function and result in irreversible changes in cerebral and coronary circulation. Concurrent frailty or other components of geriatric syndrome in elderly patients are associated with a worse perception of health, an increased number of comorbidities and social isolation of the patient. It may also interfere with treatment adherence. Identifying causes of non-adherence to pharmaceutical treatment is a key factor in planning therapeutic interventions aimed at increasing control, preventing complications, and improving long-term outcomes and any adverse effects of treatment. Diagnosis of frailty and awareness of the associated difficulties in adhering to treatment may allow targeting of those elderly patients who have a poorer prognosis or may be at risk of complications from untreated or undertreated hypertension, and for the planning of interventions to improve hypertension control.
In December of 2004 the Directorate General for Research and Technological Development (DG RTD) of the European Commission (EC) set up a High-Level Expert Group to propose a series of measures to stimulate the reporting of Intellectual Capital in research intensive Small and Medium-Sized Enterprises (SMEs). The Expert Group has focused on enterprises that either perform Research and Development (R&D), or use the results of R&D to innovate and has also considered the implications for the specialist R&D units of larger enterprises, dedicated Research & Technology Organizations and Universities. In this report the Expert Group presents its findings, leading to six recommendations to stimulate the reporting of Intellectual Capital in SMEs by raising awareness, improving reporting competencies, promoting the use of IC Reporting and facilitating standardization.
Research of non-contact anterior cruciate ligament (ACL) inj1ury risk aims to identify modifiable risk factors that are linked to the mechanisms of injury. Information from these studies is then used in the development of injury prevention programmes. However, ACL injury risk research often leans towards methods with three limitations: 1) a poor preservation of the athlete-environment rela- tionship that limits the generalisability of results, 2) the use of a strictly biomechanical approach to injury causation that is incom- plete for the description of injury mechanisms, 3) and a reductionist analysis that neglects profound information regarding human movement. This current opinion proposes three principles from an ecological dynamics perspective that address these limitations. First, it is argued that, to improve the generalisability of findings, research requires a well-preserved athlete-environment relation- ship. Second, the merit of including behaviour and the playing situation in the model of injury causation is presented. Third, this paper advocates that research benefits from conducting non- reductionist analysis (i.e., more holistic) that provides profound information regarding human movement. Together, these princi- ples facilitate an ecological dynamics approach to injury risk research that helps to expand our understanding of injury mechan- isms and thus contributes to the development of preventative measures.
The project aim is to improve collusion resistance of real-world content delivery systems. The research will address the following topics: • Dynamic tracing. Improve the Laarhoven et al. dynamic tracing constructions [1,2] [A11,A19]. Modify the tally based decoder [A1,A3] to make use of dynamic side information. • Defense against multi-channel attacks. Colluders can easily spread the usage of their content access keys over multiple channels, thus making tracing more difficult. These attack scenarios have hardly been studied. Our aim is to reach the same level of understanding as in the single-channel case, i.e. to know the location of the saddlepoint and to derive good accusation scores. Preferably we want to tackle multi-channel dynamic tracing. • Watermarking layer. The watermarking layer (how to embed secret information into content) and the coding layer (what symbols to embed) are mostly treated independently. By using soft decoding techniques and exploiting the “nuts and bolts” of the embedding technique as an extra engineering degree of freedom, one should be able to improve collusion resistance. • Machine Learning. Finding a score function against unknown attacks is difficult. For non-binary decisions there exists no optimal procedure like Neyman-Pearson scoring. We want to investigate if machine learning can yield a reliable way to classify users as attacker or innocent. • Attacker cost/benefit analysis. For the various use cases (static versus dynamic, single-channel versus multi-channel) we will devise economic models and use these to determine the range of operational parameters where the attackers have a financial benefit. For the first three topics we have a fairly accurate idea how they can be achieved, based on work done in the CREST project, which was headed by the main applicant. Neural Networks (NNs) have enjoyed great success in recognizing patterns, particularly Convolutional NNs in image recognition. Recurrent NNs ("LSTM networks") are successfully applied in translation tasks. We plan to combine these two approaches, inspired by traditional score functions, to study whether they can lead to improved tracing. An often-overlooked reality is that large-scale piracy runs as a for-profit business. Thus countermeasures need not be perfect, as long as they increase the attack cost enough to make piracy unattractive. In the field of collusion resistance, this cost analysis has never been performed yet; even a simple model will be valuable to understand which countermeasures are effective.
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.
A fast growing percentage (currently 75% ) of the EU population lives in urban areas, using 70% of available energy resources. In the global competition for talent, growth and investments, quality of city life and the attractiveness of cities as environments for learning, innovation, doing business and job creation, are now the key parameters for success. Therefore cities need to provide solutions to significantly increase their overall energy and resource efficiency through actions addressing the building stock, energy systems, mobility, and air quality.The European Energy Union of 2015 aims to ensure secure, affordable and climate-friendly energy for EU citizens and businesses among others, by bringing new technologies and renewed infrastructure to cut household bills, create jobs and boost growth, for achieving a sustainable, low carbon and environmentally friendly economy, putting Europe at the forefront of renewable energy production and winning the fight against global warming.However, the retail market is not functioning properly. Many household consumers have too little choices of energy suppliers and too little control over their energy costs. An unacceptably high percentage of European households cannot afford to pay their energy bills. Energy infrastructure is ageing and is not adjusted to the increased production from renewables. As a consequence there is still a need to attract investments, with the current market design and national policies not setting the right incentives and providing insufficient predictability for potential investors. With an increasing share of renewable energy sources in the coming decades, the generation of electricity/energy will change drastically from present-day centralized production by gigawatt fossil-fueled plants towards decentralized generation, in cities mostly by local household and district level RES (e.g PV, wind turbines) systems operating in the level of micro-grids. With the intermittent nature of renewable energy, grid stress is a challenge. Therefore there is a need for more flexibility in the energy system. Technology can be of great help in linking resource efficiency and flexibility in energy supply and demand with innovative, inclusive and more efficient services for citizens and businesses. To realize the European targets for further growth of renewable energy in the energy market, and to exploit both on a European and global level the expected technological opportunities in a sustainable manner, city planners, administrators, universities, entrepreneurs, citizens, and all other relevant stakeholders, need to work together and be the key moving wheel of future EU cities development.Our SolutionIn the light of such a transiting environment, the need for strategies that help cities to smartly integrate technological solutions becomes more and more apparent. Given this condition and the fact that cities can act as large-scale demonstrators of integrated solutions, and want to contribute to the socially inclusive energy and mobility transition, IRIS offers an excellent opportunity to demonstrate and replicate the cities’ great potential. For more information see the HKU Smart Citieswebsite or check out the EU-website.