To accelerate differentiation between Staphylococcus aureus and Coagulase Negative Staphylococci (CNS), this study aimed to compare six different DNA extraction methods from 2 commonly used blood culture materials, i.e. BACTEC and Bact/ALERT. Furthermore, we analyzed the effect of reduced blood culture times for detection of Staphylococci directly from blood culture material. A real-time PCR duplex assay was used to compare 6 different DNA isolation protocols on two different blood culture systems. Negative blood culture material was spiked with MRSA. Bacterial DNA was isolated with: automated extractor EasyMAG (3 protocols), automated extractor MagNA Pure LC (LC Microbiology Kit MGrade), a manual kit MolYsis Plus, and a combination between MolYsis Plus and the EasyMAG. The most optimal isolation method was used to evaluate reduced bacterial culture times. Bacterial DNA isolation with the MolYsis Plus kit in combination with the specific B protocol on the EasyMAG resulted in the most sensitive detection of S.aureus, with a detection limit of 10 CFU/ml, in Bact/ALERT material, whereas using BACTEC resulted in a detection limit of 100 CFU/ml. An initial S.aureus load of 1 CFU/ml blood can be detected after 5 hours of culture in Bact/ALERT3D by combining the sensitive isolation method and the tuf LightCycler assay.
DOCUMENT
Eight new primer sets were designed for PCR detection of (i) mono-oxygenase and dioxygenase gene sequences involved in initial attack of bacterial aerobic BTEX degradation and of (ii) catechol 2,3-dioxygenase gene sequences responsible for meta-cleavage of the aromatic ring. The new primer sets allowed detection of the corresponding genotypes in soil with a detection limit of 10(3)-10(4) or 10(5)-10(6) gene copies g(-1) soil, assuming one copy of the gene per cell. The primer sets were used in PCR to assess the distribution of the catabolic genes in BTEX degrading bacterial strains and DNA extracts isolated from soils sampled from different locations and depths (vadose, capillary fringe and saturated zone) within a BTEX contaminated site. In both soil DNA and the isolates, tmoA-, xylM- and xylE1-like genes were the most frequently recovered BTEX catabolic genes. xylM and xylE1 were only recovered from material from the contaminated samples while tmoA was detected in material from both the contaminated and non-contaminated samples. The isolates, mainly obtained from the contaminated locations, belonged to the Actinobacteria or Proteobacteria (mainly Pseudomonas). The ability to degrade benzene was the most common BTEX degradation phenotype among them and its distribution was largely congruent with the distribution of the tmoA-like genotype. The presence of tmoA and xylM genes in phylogenetically distant strains indicated the occurrence of horizontal transfer of BTEX catabolic genes in the aquifer. Overall, these results show spatial variation in the composition of the BTEX degradation genes and hence in the type of BTEX degradation activity and pathway, at the examined site. They indicate that bacteria carrying specific pathways and primarily carrying tmoA/xylM/xylE1 genotypes, are being selected upon BTEX contamination.
DOCUMENT
Application of animal manure to soils results in the introduction of manure-derived bacteria and their antimicrobial resistance genes (ARGs) into soils. ResCap is a novel targeted-metagenomic approach that allows the detection of minority components of the resistome gene pool without the cost-prohibitive coverage depths and can provide a valuable tool to study the spread of antimicrobial resistance (AMR) in the environment. We used high-throughput sequencing and qPCR for 16S rRNA gene fragments as well as ResCap to explore the dynamics of bacteria, and ARGs introduced to soils and adjacent water ditches, both at community and individual scale, over a period of three weeks. The soil bacteriome and resistome showed strong resilience to the input of manure, as manuring did not impact the overall structure of the bacteriome, and its effects on the resistome were transient. Initially, manure application resulted in a substantial increase of ARGs in soils and adjacent waters, while not affecting the overall bacterial community composition. Still, specific families increased after manure application, either through the input of manure (e.g., Dysgonomonadaceae) or through enrichment after manuring (e.g., Pseudomonadaceae). Depending on the type of ARG, manure application resulted mostly in an increase (e.g., aph(6)-Id), but occasionally also in a decrease (e.g., dfrB3) of the absolute abundance of ARG clusters (FPKM/kg or L). This study shows that the structures of the bacteriome and resistome are shaped by different factors, where the bacterial community composition could not explain the changes in ARG diversity or abundances. Also, it highlights the potential of applying targeted metagenomic techniques, such as ResCap, to study the fate of AMR in the environment.
DOCUMENT
Rioolwaterzuiveringen zijn de belangrijkste bron van geneesmiddelen en kunstmatige zoetstoffen in oppervlaktewater. De mate waarin rwzi’s deze organische microverontreinigingen verwijderen, lijkt te variëren van locatie tot locatie en/of in de tijd. Oriënterend onderzoek bij zeven rwzi’s in Groningen en Drenthe toonde aan dat de verwijdering van de zoetstof acesulfaam erg varieerde. Om het verschil in de biologische verwijderingscapaciteit voor acesulfaam en geneesmiddelen te kunnen verklaren, bieden nieuwe DNA-technieken wellicht uitkomst. Met Next Generation Sequencing (NGS) komen verschillen tussen bacteriepopulaties aan het licht die mogelijk verschillen in verwijdering van geneesmiddelen en zoetstoffen kunnen verklaren.
DOCUMENT
The Green Biotechnology research group focusses on the application of molecular breeding/biotechnological tools and also on the development/analysis of new tools, for the breeding of enhanced vegetable crops and ornamental plants. The research group is positioned within Inholland University of Applied Sciences, Life Sciences & Chemistry and serves as a link between the breeding companies and our education of the skilled technicians of tomorrow. We are working on the development of a method for targeted mutagenesis of plant genomes using the bacterial CRISPR-Cas system. This method greatly enhances the effectiveness and speed by which new crops and plants can be developed
DOCUMENT
Five methods were compared to determine the best technique for accurate identification of coagulase-negative staphylococci (CoNS) (n=142 strains). MALDI-TOF MS showed the best results for rapid and accurate CoNS differentiation (correct identity in 99.3%). An alternative to this approach could be Vitek2 combined with partial tuf gene sequencing.
DOCUMENT
tmoA and related genes encode the alpha-subunit of the hydroxylase component of the major group (subgroup 1 of subfamily 2) of bacterial multicomponent mono-oxygenase enzyme complexes involved in aerobic benzene, toluene, ethylbenzene and xylene (BTEX) degradation. A PCR-denaturing gradient gel electrophoresis (DGGE) method was developed to assess the diversity of tmoA-like gene sequences in environmental samples using a newly designed moderately degenerate primer set suitable for that purpose. In 35 BTEX-degrading bacterial strains isolated from a hydrocarbon polluted aquifer, tmoA-like genes were only detected in two o-xylene degraders and were identical to the touA gene of Pseudomonas stutzeri OX1. The diversity of tmoA-like genes was examined in DNA extracts from contaminated and non-contaminated subsurface samples at a site containing a BTEX-contaminated groundwater plume. Differences in DGGE patterns were observed between strongly contaminated, less contaminated and non-contaminated samples and between different depths, suggesting that the diversity of tmoA-like genes was determined by environmental conditions including the contamination level. Phylogenetic analysis of the protein sequences deduced from the amplified amplicons showed that the diversity of TmoA-analogues in the environment is larger than suggested from described TmoA-analogues from cultured isolates, which was translated in the DGGE patterns. Although different positions on the DGGE gel can correspond to closely related TmoA-proteins, relationships could be noticed between the position of tmoA-like amplicons in the DGGE profile and the phylogenetic position of the deduced protein sequence.
DOCUMENT
Matrix-assisted laser desorption/ionisation time of-flight mass spectrometry (MALDI-TOF MS) is a fast and reliable method for the identification of bacteria from agar media. Direct identification from positive blood cultures should decrease the time to obtaining the result. In this study, three different processing methods for the rapid direct identification of bacteria from positive blood culture bottles were compared. In total, 101 positive aerobe BacT/ALERT bottles were included in this study. Aliquots from all bottles were used for three bacterial processing methods, i.e. the commercially available Bruker's MALDI Sepsityper kit, the commercially available Molzym's MolYsis Basic5 kit and a centrifugation/washing method. In addition, the best method was used to evaluate the possibility of MALDI application after a reduced incubation time of 7 h of Staphylococcus aureus- and Escherichia coli-spiked (1,000, 100 and 10 colony-forming units [CFU]) aerobe BacT/ALERT blood cultures. Sixty-six (65%), 51 (50.5%) and 79 (78%) bottles were identified correctly at the species level when the centrifugation/washing method, MolYsis Basic 5 and Sepsityper were used, respectively. Incorrect identification was obtained in 35 (35%), 50 (49.5%) and 22 (22%) bottles, respectively. Gram-positive cocci were correctly identified in 33/52 (64%) of the cases. However, Gram-negative rods showed a correct identification in 45/47 (96%) of all bottles when the Sepsityper kit was used. Seven hours of pre-incubation of S. aureus- and E. coli-spiked aerobe BacT/ALERT blood cultures never resulted in reliable identification with MALDI-TOF MS. Sepsityper is superior for the direct identification of microorganisms from aerobe BacT/ALERT bottles. Gram-negative pathogens show better results compared to Gram-positive bacteria. Reduced incubation followed by MALDI-TOF MS did not result in faster reliable identification.
DOCUMENT
Manure application can spread antimicrobial resistance (AMR) from manure to soil and surface water. This study evaluated the role of the soil texture on the dynamics of antimicrobial resistance genes (ARGs) in soils and surrounding surface waters. Six dairy farms with distinct soil textures (clay, sand, and peat) were sampled at different time points after the application of manure, and three representative ARGs sul1, erm(B), and tet(W) were quantified with qPCR. Manuring initially increased levels of erm(B) by 1.5 ± 0.5 log copies/kg of soil and tet(W) by 0.8 ± 0.4 log copies/kg across soil textures, after which levels gradually declined. In surface waters from clay environments, regardless of the ARG, the gene levels initially increased by 2.6 ± 1.6 log copies/L, after which levels gradually declined. The gene decay in soils was strongly dependent on the type of ARG (erm(B) < tet(W) < sul1; half-lives of 7, 11, and 75 days, respectively), while in water, the decay was primarily dependent on the soil texture adjacent to the sampled surface water (clay < peat < sand; half-lives of 2, 6, and 10 days, respectively). Finally, recovery of ARG levels was predicted after 29–42 days. The results thus showed that there was not a complete restoration of ARGs in soils between rounds of manure application. In conclusion, this study demonstrates that rather than showing similar dynamics of decay, factors such as the type of ARG and soil texture drive the ARG persistence in the environment.
DOCUMENT
Inoculation of maize silage with Lactobacillus buchneri (5 × 105 c.f.u. g-1 of maize silage) prior to ensiling results in the formation of aerobically stable silage. After 9 months, lactic acid bacterium counts are approximately 1010 c.f.u. g-1 in these treated silages. An important subpopulation (5.9 × 107 c.f.u. g-1) is able to degrade 1,2-propanediol, a fermentation product of L. buchneri, under anoxic conditions to 1-propanol and propionic acid. From this group of 1,2-propanediol-fermenting, facultatively anaerobic, heterofermentative lactobacilli, two rod-shaped isolates were purified and characterized. Comparative 16S rDNA sequence analysis revealed that the newly isolated bacteria have identical 16S rDNA sequences and belong phylogenetically to the L. buchneri group. DNA-DNA hybridizations, whole-cell protein fingerprinting and examination of phenotypic properties indicated that these two isolates represent a novel species, for which the name Lactobacillus diolivorans sp. nov. is proposed. The type strain is LMG 19667T ( = DSM 14421T).
DOCUMENT