Understanding the factors that may impact the transfer, persistence, prevalence and recovery of DNA (DNA-TPPR), and the availability of data to assign probabilities to DNA quantities and profile types being obtained given particular scenarios and circumstances, is paramount when performing, and giving guidance on, evaluations of DNA findings given activity level propositions (activity level evaluations). In late 2018 and early 2019, three major reviews were published on aspects of DNA-TPPR, with each advocating the need for further research and other actions to support the conduct of DNA-related activity level evaluations. Here, we look at how challenges are being met, primarily by providing a synopsis of DNA-TPPR-related articles published since the conduct of these reviews and briefly exploring some of the actions taken by industry stakeholders towards addressing identified gaps. Much has been carried out in recent years, and efforts continue, to meet the challenges to continually improve the capacity of forensic experts to provide the guidance sought by the judiciary with respect to the transfer of DNA.
DOCUMENT
Considering activity level propositions in the evaluation of forensic biology findings is becoming more common place. There are increasing numbers of publications demonstrating different transfer mechanisms that can occur under a variety of circumstances. Some of these publications have shown the possibility of DNA transfer from site to site on an exhibit, for instance as a result of packaging and transport. If such a possibility exists, and the case circumstances are such that the area on an exhibit where DNA is present or absent is an observation that is an important diagnostic characteristic given the propositions, then site to site transfer should be taken into account during the evaluation of observations. In this work we demonstrate the ways in which site to site transfer can be built into Bayesian networks when carrying out activity level evaluations of forensic biology findings. We explore the effects of considering qualitative vs quantitative categorisation of DNA results. We also show the importance of taking into account multiple individual’s DNA being transferred (such as unknown or wearer DNA), even if the main focus of the evaluation is the activity of one individual.
DOCUMENT
A large, recently published, inter-laboratory study by the ReAct group has shown that there is considerable variability in DNA recovery that exists between forensic laboratories. The presence of this inter-laboratory variability presents issues when one laboratory wishes to carry out an evaluation and needs to use the data produced by another laboratory. One option proposed by the ReAct group is for laboratories to carry out a calibration exercise so that appropriate adjustments between laboratories can be made. This will address some issues, but leave others unanswered, such as how to make use of the decades of transfer and persistence data that has already been published. In this work we present a method to utilise data produced in other laboratories (whether it provides DNA amounts or a probability of transfer) that takes into account inter-laboratory variability within an evaluation. This will allow evaluations to continue, without calibration data, and ensures that the strength of findings is appropriately represented. In this paper we discuss complicating factors with the various ways in which previous data has been reported, and their limitations in supporting probability assignments when carrying out an evaluation. We show that a combination of producing calibration information for new data (as suggested by the ReAct group) and development of strategies where calibration data is not available will provide the best way forward in the field of evaluations given activities.
DOCUMENT