Dit artikel is eerder gepubliceerd in het Tijdschrift voor Lerarenopleiders, 2013, nr. 2 Samen met leerlingen, leerkrachten en ouders een positief schoolklimaat creëren, waaringewenst gedrag wordt bevorderd cq gedragsproblemen worden voorkomen. Dat is waarPositive Behavior Support (PBS) voor staat. In het kader van Passend Onderwijs zou PBSeen waardevolle bijdrage kunnen leveren aan de pedagogische handelingsverlegenheiddie we waarnemen bij met name beginnende leerkrachten t.a.v. ongewenst gedrag (Goei& Kleijnen, 2009). PBS is sterk gericht op bevorderen van gewenst gedrag bij leerlingen,zodat elke leerling kan profiteren van het geboden onderwijs (Golly & Sprague, 2009).De aanpak is gericht op alle leerlingen. Binnen het pabocurriculum van Hogeschool EdithStein (HES) in Hengelo hebben studenten in de werkplekbekwame fase (derde studiejaar)vanuit het vak pedagogiek/onderwijskunde ervaren welke bijdrage PBS kan leveren aaneen positief onderwijsklimaat waarin zowel de leerling als de leerkracht het best tothaar recht komt. In dit artikel wordt beschreven op welke wijze PBS binnen het pabocurriculum is ingezet en aangeboden.
MULTIFILE
Dit project poogt een bijdrage te leveren aan het versterken van “de kennisketen van de gastvrijheidseconomie” middels de volgende projectdoelstellingen: • SWOT-analyse van huidige situatie, vanuit verschillende stakeholderperspectieven: kijkend vanuit de ontwikkelopgaves die men ziet, aan welke data over de customer journey is behoefte (inventarisatie)? Wat zijn de bijbehorende sterktes, zwaktes, kansen en bedreigingen (analyse)? • Versterken van de kennisketen via: hoe kunnen we kennisketen versterken met nieuwe technieken en door slim organiseren? • Een overzicht van strategische opties: welke strategische opties zijn er om 1.) sterktes te benutten om kansen te pakken en bedreigingen af te wenden en 2.) zwaktes op te lossen door kansen te pakken en gevaren te voorkomen die met bedreigingen meekomen • Input leveren voor 2.0 versie van het manifest van Gastvrij Overijssel en de beoogde oprichting van een “Data Hub” (waarvoor nog geen officiële werktitel) In de opvolgende hoofdstukken en paragrafen gaan we in op de aanpak (hoofdstuk 2) en de uitkomsten (hoofdstuk 3).
Developers of charging infrastructure, be it public or private parties, are highly dependent on accurate utilization data in order to make informed decisions where and when to expand charging points. The Amsterdam The Amsterdam University of Applied Sciences in close cooperation with the municipalities of Amsterdam, Rotterdam, The Hague, Utrecht and the metropolitan region of Amsterdam developed both the back- and front-end of a decision support tool. This paper describes the design of the decision support tool and its DataWareHouse architecture. The back-end is based on a monthly update of charging data with Charge point Detail Records and Meter Values enriched with location specific data. The design of the front-end is based on Key Performance Indicators used in the decision process for charging infrastructure roll-out. Implementing this design and DataWareHouse architecture allows all kinds of EV related companies and cities to start monitoring their charging infrastructure. It provides an overview of how the most important KPIs are being monitored and represented in the decision support tool based on regular interviews and decision processes followed by four major cities and a metropolitan region in the Netherlands.
Middels een RAAK-impuls aanvraag wordt beoogd de vertraging van het RAAK-mkb project Praktische Predictie t.g.v. corona in te halen. In het project Praktische Predictie wordt een prototype app ontwikkeld waarmee fysiotherapeuten in een vroeg stadium het chronisch worden van lage rugpijn kunnen voorspellen. Om chronische rugpijn te voorkomen is het belangrijk om in een vroeg stadium de kans hierop in te schatten door psychosociale en mogelijk andere risicofactoren op chronische pijnklachten te herkennen en hierop te interveniëren. Fysiotherapeuten zijn met deze vraag naar het lectoraat Werkzame factoren in Fysiotherapie en Paramedisch Handelen van de Hogeschool van Arnhem en Nijmegen gegaan en dit heeft aanleiding gegeven een onderzoek op te zetten waarin een dergelijke methodiek ontwikkeld wordt. De voorgestelde methodiek betreft een Clinical Decision Support Tool waarmee een geïndividualiseerde kans op chronische rugpijn kan worden bepaald gekoppeld aan een behandeladvies conform de lage rugpijn richtlijn. Hiervoor is eerst geïnventariseerd welke methoden fysiotherapeuten reeds gebruiken en welke in de literatuur worden genoemd. Op basis hiervan is een keuze gemaakt ten aanzien van data die digitaal verzameld worden in minimaal 16 fysiotherapiepraktijken waarbij patiënten gedurende 12 weken gevolgd worden. Met de verzamelde data worden met machine learning algoritmes ontwikkeld voor het berekenen van de kans op chroniciteit. De algoritmes worden ingebouwd in de Clinical Decision Support Tool: een gebruiksvriendelijke prototype app. Bij het ontwikkelen van de tool worden eindgebruikers (fysiotherapeuten en patiënten) intensief betrokken. Op deze manier wordt gegarandeerd dat de tool aansluit bij de wensen en behoeften van de doelgroep. De tool berekent de kans op chroniciteit en geeft een behandeladvies. Daarnaast kan de tool gebruikt worden om patiënten te informeren en te betrekken bij de besluitvorming. Vanwege de coronacrisis is er een aanzienlijke vertraging in de patiënten-instroom (doel n= 300) ontstaan die we met ondersteuning van een RAAK-impuls subsidie willen inlopen.
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to collect, manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. Participants in the interviews that we organized preparing this proposal indicated a need for guidance on how to develop DAC within their organization given their unique context (e.g. age and experience of the workforce, presence of legacy systems, high daily workload, lack of knowledge of digitalization). While a lot of attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC. From a structure perspective, the objective of the KIEM proposal will be to explore and solidify the partnership between Breda University of Applied Sciences (BUas), Avans University of Applied Sciences (Avans), Logistics Community Brabant (LCB), van Berkel Logistics BV, Smink Group BV, and iValueImprovement BV. This partnership will be used to develop the preliminary roadmap and pre-test it using action methodology. The action research protocol and preliminary roadmap thereby developed in this KIEM project will form the basis for a subsequent RAAK proposal.
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. While extensive attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC.