Process Mining can roughly be defined as a data-driven approach to process management. The basic idea of process mining is to automatically distill and to visualize business processes using event logs from company IT-systems (e.g. ERP, WMS, CRM etc.) to identify specific areas for improvement at an operational level. An event log can be described as a database entry that signifies a specific action in a software application at a specific time. Simple examples of these actions are customer order entries, scanning an item in a warehouse, and registration of a patient for a hospital check-up.Process mining has gained popularity in the logistics domain in recent years because of three main reasons. Firstly, the logistics IT-systems' large and exponentially growing amounts of event data are being stored and provide detailed information on the history of logistics processes. Secondly, to outperform competitors, most organizations are searching for (new) ways to improve their logistics processes such as reducing costs and lead time. Thirdly, since the 1970s, the power of computers has grown at an astonishing rate. As such, the use of advance algorithms for business purposes, which requires a certain amount of computational power, have become more accessible.Before diving into Process Mining, this course will first discuss some basic concepts, theories, and methods regarding the visualization and improvement of business processes.
MULTIFILE
The growing availability of data offers plenty of opportunities for data driven innovation of business models for SMEs like interactive media companies. However, SMEs lack the knowledge and processes to translate data into attractive propositions and design viable data-driven business models. In this paper we develop and evaluate a practical method for designing data driven business models (DDBM) in the context of interactive media companies. The development follows a design science research approach. The main result is a step-by-step approach for designing DDBM, supported by pattern cards and game boards. Steps consider required data sources and data activities, actors and value network, revenue model and implementation aspects. Preliminary evaluation shows that the method works as a discussion tool to uncover assumptions and make assessments to create a substantiated data driven business model.
MULTIFILE
To reach the European Green Deal by 2050, the target for the road transport sector is set at 30% less CO2 emissions by 2030. Given the fact that heavy-duty commercial vehicles throughout Europe are driven nowadays almost exclusively on fossil fuels it is obvious that transition towards reduced emission targets needs to happen seamlessly by hybridization of the existing fleet, with a continuously increasing share of Zero Emission vehicle units. At present, trailing units such as semitrailers do not possess any form of powertrain, being a missed opportunity. By introduction of electrically driven axles into these units the fuel consumption as well as amount of emissions may be reduced substantially while part of the propulsion forces is being supplied on emission-free basis. Furthermore, the electrification of trailing units enables partial recuperation of kinetic energy while braking. Nevertheless, a number of challenges still exist preventing swift integration of these vehicles to daily operation. One of the dominating ones is the intelligent control of the e-axle so it delivers right amount of propulsion/braking power at the right time without receiving detailed information from the towing vehicle (such as e.g. driver control, engine speed, engine torque, or brake pressure, …etc.). This is required mainly to ensure interoperability of e-Trailers in the fleets, which is a must in the logistics nowadays. Therefore the main mission of CHANGE is to generate a chain of knowledge in developing and implementing data driven AI-based applications enabling SMEs of the Dutch trailer industry to contribute to seamless energetic transition towards zero emission road freight transport. In specific, CHANGE will employ e-Trailers (trailers with electrically driven axle(s) enabling energy recuperation) connected to conventional hauling units as well as trailers for high volume and extreme payload as focal platforms (demonstrators) for deployment of these applications.
DISCO aims at fast-tracking upscaling to new generation of urban logistics and smart planning unblocking the transition to decarbonised and digital cities, delivering innovative frameworks and tools, Physical Internet (PI) inspired. To this scope, DISCO will deploy and demonstrate innovative and inclusive urban logistics and planning solutions for dynamic space re-allocation integrating urban freight at local level, within efficiently operated network-of-networks (PI) where the nodes and infrastructure are fixed and mobile based on throughput demands. Solutions are co-designed with the urban logistics community – e.g., cities, logistics service providers, retailers, real estate/public and private infrastructure owners, fleet owners, transport operators, research community, civil society - all together moving a paradigm change from sprawl to data driven, zero-emission and nearby-delivery-based models.
The IMPULS-2020 project DIGIREAL (BUas, 2021) aims to significantly strengthen BUAS’ Research and Development (R&D) on Digital Realities for the benefit of innovation in our sectoral industries. The project will furthermore help BUas to position itself in the emerging innovation ecosystems on Human Interaction, AI and Interactive Technologies. The pandemic has had a tremendous negative impact on BUas industrial sectors of research: Tourism, Leisure and Events, Hospitality and Facility, Built Environment and Logistics. Our partner industries are in great need of innovative responses to the crises. Data, AI combined with Interactive and Immersive Technologies (Games, VR/AR) can provide a partial solution, in line with the key-enabling technologies of the Smart Industry agenda. DIGIREAL builds upon our well-established expertise and capacity in entertainment and serious games and digital media (VR/AR). It furthermore strengthens our initial plans to venture into Data and Applied AI. Digital Realities offer great opportunities for sectoral industry research and innovation, such as experience measurement in Leisure and Hospitality, data-driven decision-making for (sustainable) tourism, geo-data simulations for Logistics and Digital Twins for Spatial Planning. Although BUas already has successful R&D projects in these areas, the synergy can and should significantly be improved. We propose a coherent one-year Impuls funded package to develop (in 2021): 1. A multi-year R&D program on Digital Realities, that leads to, 2. Strategic R&D proposals, in particular a SPRONG/sleuteltechnologie proposal; 3. Partnerships in the regional and national innovation ecosystem, in particular Mind Labs and Data Development Lab (DDL); 4. A shared Digital Realities Lab infrastructure, in particular hardware/software/peopleware for Augmented and Mixed Reality; 5. Leadership, support and operational capacity to achieve and support the above. The proposal presents a work program and management structure, with external partners in an advisory role.