Estimating the remaining useful life (RUL) of an asset lies at the heart of prognostics and health management (PHM) of many operations-critical industries such as aviation. Mod- ern methods of RUL estimation adopt techniques from deep learning (DL). However, most of these contemporary tech- niques deliver only single-point estimates for the RUL without reporting on the confidence of the prediction. This practice usually provides overly confident predictions that can have severe consequences in operational disruptions or even safety. To address this issue, we propose a technique for uncertainty quantification (UQ) based on Bayesian deep learning (BDL). The hyperparameters of the framework are tuned using a novel bi-objective Bayesian optimization method with objectives the predictive performance and predictive uncertainty. The method also integrates the data pre-processing steps into the hyperparameter optimization (HPO) stage, models the RUL as a Weibull distribution, and returns the survival curves of the monitored assets to allow informed decision-making. We vali- date this method on the widely used C-MAPSS dataset against a single-objective HPO baseline that aggregates the two ob- jectives through the harmonic mean (HM). We demonstrate the existence of trade-offs between the predictive performance and the predictive uncertainty and observe that the bi-objective HPO returns a larger number of hyperparameter configurations compared to the single-objective baseline. Furthermore, we see that with the proposed approach, it is possible to configure models for RUL estimation that exhibit better or comparable performance to the single-objective baseline when validated on the test sets.
Biodiversity preservation is often viewed in utilitarian terms that render non-human species as ecosystem services or natural resources. The economic capture approach may be inadequate in addressing biodiversity loss because extinction of some species could conceivably come to pass without jeopardizing the survival of the humans. People might be materially sustained by a technological biora made to yield services and products required for human life. The failure to address biodiversity loss calls for an exploration of alternative paradigms. It is proposed that the failure to address biodiversity loss stems from the fact that ecocentric value holders are politically marginalized and underrepresented in the most powerful strata of society. While anthropocentric concerns with environment and private expressions of biophilia are acceptable in the wider society, the more pronounced publicly expressed deep ecology position is discouraged. “Radical environmentalists” are among the least understood of all contemporary opposition movements, not only in tactical terms, but also ethically. The article argues in favor of the inclusion of deep ecology perspective as an alternative to the current anthropocentric paradigm. https://doi.org/10.1080/1943815X.2012.742914 https://www.linkedin.com/in/helenkopnina/
Aaltjes: automatisch classificeren en tellen. Agrariërs laten bodemmonsters analyseren op onder meer aanwezigheid van aaltjes. Deze bodemanalyse is voor agrariërs cruciaal om de bodemgezondheid- en vruchtbaarheid vast te stellen maar behelst een grote kostenpost. Het identificeren, analyseren en tellen van aaltjes (nematoden) in een bodemmonster geschiedt in een gespecialiseerd laboratorium. Dit is tijdrovend, specialistisch en seizoensgebonden werk. Het tellen- en analyseren van aaltjes is mensenwerk en vergt training en ervaring van de laborant. Daarnaast hebben de laboratoria te maken met personeelstekort en de laboranten met sterk fluctuerende werkdruk. Derhalve is het speciaal voor dit project opgerichte samenwerkingsverband tussen Fontys GreenTechLab, ROBA Laboratorium en CytoSMART voornemens om een oplossing te ontwikkelen voor het automatisch classificeren en tellen van aaltjes. Dit project richt zich op de ontwikkeling van een proof of concept van een analysescanner. Het werk van de laboranten wordt grotendeels geautomatiseerd waarbij door de scanner de bodemmonsters middels toepassing van deep learning en virtual modeling kan worden geanalyseerd. Daarmee wordt beoogd een oplossing te bieden waarmee het personeelstekort wordt tegengegaan, de werkdruk kan worden verlaagd, mensenwerk wordt geautomatiseerd (waardoor de kans op fouten wordt verkleind) en de kosten voor agrariërs worden verlaagd.
Artificial Intelligence (AI) wordt realiteit. Slimme ICT-producten die diensten op maat leveren accelereren de digitalisering van de maatschappij. De grote innovaties van de komende jaren –zelfrijdende auto’s, spraakgestuurde virtuele assistenten, autodiagnose systemen, robots die autonoom complexe taken uitvoeren – zijn datagedreven en hebben een AI-component. Dit gaat de rol van professionals in alle domeinen, gezondheidzorg, bouwsector, financiële dienstverlening, maakindustrie, journalistiek, rechtspraak, etc., raken. ICT is niet meer volgend en ondersteunend (een ‘enabling’ technologie), maar de motor die de transformatie van de samenleving in gang zet. Grote bedrijven, overheidsinstanties, het MKB, en de vele startups in de Brainport regio zijn innovatieve datagedreven scenario’s volop aan het verkennen. Dit wordt nog eens versterkt door de democratisering van AI; machine learning en deep learning algoritmes zijn beschikbaar zowel in open source software als in Cloud oplossingen en zijn daarmee toegankelijk voor iedereen. Data science wordt ‘applied’ en verschuift van een PhD specialisme naar een HBO-vaardigheid. Het stadium waarin veel bedrijven nu verkeren is te omschrijven als: “Help, mijn AI-pilot is succesvol. Wat nu?” Deze aanvraag richt zich op het succesvol implementeren van AI binnen de context van softwareontwikkeling. De onderzoeksvraag van dit voorstel is: “Hoe kunnen we state-of-the-art data science methoden en technieken waardevol en verantwoord toepassen ten behoeve van deze slimme lerende ICT-producten?” De postdoc gaat fungeren als een linking pin tussen alle onderzoeksprojecten en opdrachten waarbij studenten ICT-producten met AI (machine learning, deep learning) ontwikkelen voor opdrachtgevers uit de praktijk. Door mee te kijken en mee te denken met de studenten kan de postdoc overzicht en inzicht creëren over alle cases heen. Als er overzicht is kan er daarna ook gestuurd worden op de uit te voeren cases om verschillende deelaspecten samen met de studenten te onderzoeken. Deliverables zijn rapporten, guidelines en frameworks voor praktijk en onderwijs, peer-reviewed artikelen en kennisdelingsevents.
The European creative visual industry is undergoing rapid technological development, demanding solid initiatives to maintain a competitive position in the marketplace. AVENUE, a pan-European network of Centres of Vocational Excellence, addresses this need through a collaboration of five independent significant ecosystems, each with a smart specialisation. AVENUE will conduct qualified industry-relevant research to assess, analyse, and conclude on the immediate need for professional training and educational development. The primary objective of AVENUE is to present opportunities for immediate professional and vocational training, while innovating teaching and learning methods in formal education, to empower students and professionals in content creation, entrepreneurship, and innovation, while supporting sustainability and healthy working environments. AVENUE will result in a systematised upgrade of workforce to address the demand for new skills arising from rapid technological development. Additionally, it will transform the formal education within the five participating VETs, making them able to transition from traditional artistic education to delivering skills, mindsets and technological competencies demanded by a commercial market. AVENUE facilitates mobility, networking and introduces a wide range of training formats that enable effective training within and across the five ecosystems. A significant portion of the online training is Open Access, allowing professionals from across Europe to upgrade their skills in various processes and disciplines. The result of AVENUE will be a deep-rooted partnership between five strong ecosystems, collaborating to elevate the European industry. More than 2000 professionals, employees, students, and young talents will benefit from relevant and immediate upgrading of competencies and skills, ensuring that the five European ecosystems remain at the forefront of innovation and competitiveness in the creative visual industry.