Background: A paradigm shift in health care from illness to wellbeing requires new assessment technologies and intervention strategies. Self-monitoring tools based on the Experience Sampling Method (ESM) might provide a solution. They enable patients to monitor both vulnerability and resilience in daily life. Although ESM solutions are extensively used in research, a translation from science into daily clinical practice is needed. Objective: To investigate the redesign process of an existing platform for ESM data collection for detailed functional analysis and disease management used by psychological assistants to the general practitioner (PAGPs) in family medicine. Methods: The experience-sampling platform was reconceptualized according to the design thinking framework in three phases. PAGPs were closely involved in co-creation sessions. In the ‘understand’ phase, knowledge about end-users’ characteristics and current eHealth use was collected (nominal group technique – 2 sessions with N = 15). In the ‘explore’ phase, the key needs concerning the platform content and functionalities were evaluated and prioritized (empathy mapping – 1 session with N = 5, moderated user testing – 1 session with N = 4). In the ‘materialize’ phase, the adjusted version of the platform was tested in daily clinical practice (4 months with N = 4). The whole process was extensively logged, analyzed using content analysis, and discussed with an interprofessional project group. Results: In the ‘understand’ phase, PAGPs emphasized the variability in symptoms reported by patients. Therefore, moment-to-moment assessment of mood and behavior in a daily life context could be valuable. In the ‘explore’ phase, (motivational) functionalities, technological performance and instructions turned out to be important user requirements and could be improved. In the ‘materialize’ phase, PAGPs encountered barriers to implement the experience-sampling platform. They were insufficiently facilitated by the regional primary care group and general practitioners. Conclusion: The redesign process in co-creation yielded meaningful insights into the needs, desires and daily routines in family medicine. Severe barriers were encountered related to the use and uptake of the experience-sampling platform in settings where health care professionals lack the time, knowledge and skills. Future research should focus on the applicability of this platform in family medicine and incorporate patient experiences.
The methodology of biomimicry design thinking is based on and builds upon the overarching patterns that all life abides by. “Cultivating cooperative relationships” within an ecosystem is one such pattern we as humans can learn from to nurture our own mutualistic and symbiotic relationships. While form and process translations from biology to design have proven accessible by students learning biomimicry, the realm of translating biological functions in a systematic approach has proven to be more difficult. This study examines how higher education students can approach the gap that many companies in transition are struggling with today; that of thinking within the closed loops of their own ecosystem, to do good without damaging the system itself. Design students should be able to assess and advise on product design choices within such systems after graduation. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter, and many obstacles are encountered by students and their professional clients when trying to implement systems thinking into their design process. While biomimicry offers guidelines and methodology, there is insufficient research on complex, systems-level problem solving that systems thinking biomimicry requires. This study looks at factors found in course exercises, through student surveys and interviews that helped (novice) professionals initiate systems thinking methods as part of their strategy. The steps found in this research show characteristics from student responses and matching educational steps which enabled them to develop their own approach to challenges in a systems thinking manner. Experiences from the 2022 cohort of the semester “Design with Nature” within the Industrial Design Engineering program at The Hague University of Applied Sciences in the Netherlands have shown that the mixing and matching of connected biological design strategies to understand integrating functions and relationships within a human system is a promising first step. Stevens LL, Whitehead C, Singhal A. Cultivating Cooperative Relationships: Identifying Learning Gaps When Teaching Students Systems Thinking Biomimicry. Biomimetics. 2022; 7(4):184. https://doi.org/10.3390/biomimetics7040184
This publication by Kathryn Best accompanied the Lector’s inauguration as head of the research group Cross-media, Brand, Reputation & Design Management (CBRD) in January 2011. The book outlines current debates around the Creative Industries, business and design education and the place of ’well being’ in society, the environment and the economy, before focusing in on the place for design thinking in creative and innovation processes, and how this is driving new applied research agendas and initiatives in education and industry.
A fast growing percentage (currently 75% ) of the EU population lives in urban areas, using 70% of available energy resources. In the global competition for talent, growth and investments, quality of city life and the attractiveness of cities as environments for learning, innovation, doing business and job creation, are now the key parameters for success. Therefore cities need to provide solutions to significantly increase their overall energy and resource efficiency through actions addressing the building stock, energy systems, mobility, and air quality.The European Energy Union of 2015 aims to ensure secure, affordable and climate-friendly energy for EU citizens and businesses among others, by bringing new technologies and renewed infrastructure to cut household bills, create jobs and boost growth, for achieving a sustainable, low carbon and environmentally friendly economy, putting Europe at the forefront of renewable energy production and winning the fight against global warming.However, the retail market is not functioning properly. Many household consumers have too little choices of energy suppliers and too little control over their energy costs. An unacceptably high percentage of European households cannot afford to pay their energy bills. Energy infrastructure is ageing and is not adjusted to the increased production from renewables. As a consequence there is still a need to attract investments, with the current market design and national policies not setting the right incentives and providing insufficient predictability for potential investors. With an increasing share of renewable energy sources in the coming decades, the generation of electricity/energy will change drastically from present-day centralized production by gigawatt fossil-fueled plants towards decentralized generation, in cities mostly by local household and district level RES (e.g PV, wind turbines) systems operating in the level of micro-grids. With the intermittent nature of renewable energy, grid stress is a challenge. Therefore there is a need for more flexibility in the energy system. Technology can be of great help in linking resource efficiency and flexibility in energy supply and demand with innovative, inclusive and more efficient services for citizens and businesses. To realize the European targets for further growth of renewable energy in the energy market, and to exploit both on a European and global level the expected technological opportunities in a sustainable manner, city planners, administrators, universities, entrepreneurs, citizens, and all other relevant stakeholders, need to work together and be the key moving wheel of future EU cities development.Our SolutionIn the light of such a transiting environment, the need for strategies that help cities to smartly integrate technological solutions becomes more and more apparent. Given this condition and the fact that cities can act as large-scale demonstrators of integrated solutions, and want to contribute to the socially inclusive energy and mobility transition, IRIS offers an excellent opportunity to demonstrate and replicate the cities’ great potential. For more information see the HKU Smart Citieswebsite or check out the EU-website.