Distribution structures, as studied in this paper, involve the spatial layout of the freight transport and storage system used to move goods between production and consumption locations. Decisions on this layout are important to companies as they allow them to balance customer service levels and logistics costs. Until now there has been very little descriptive research into the factors that drive decisions about these structures. Moreover, the literature on the topic is scattered across various research streams. In this paper we review and consolidate this literature, with the aim to arrive at a comprehensive list of factors. Three relevant research streams were identified: Supply Chain Management (SCM), Transportation and Geography. The SCM and Transportation literature mostly focus on distribution structure including distribution centre (DC) location selection from a viewpoint of service level and logistics costs factors. The Geography literature focuses on spatial DC location decisions and resulting patterns mostly explained by location factors such as labour and land availability. Our review indicates that the main factors that drive decision-making are “demand level”, “service level”, “product characteristics”, “logistics costs”, “labour and land”, “accessibility” and “contextual factors”. The main trade-off influencing distribution structure selection is “service level” versus “logistics costs”. Together, the research streams provide a rich picture of the factors that drive distribution structure including DC location selection. We conclude with a framework that shows the relative position of these factors. Future work can focus on completing the framework by detailing out the sub factors and empirically testing the direction and strength of relationships. Cooperation between the three research streams will be useful to further extend and operationalize the framework.
DOCUMENT
The circular economy (CE) is heralded as reducing material use and emissions while providing more jobs and growth. We explored this narrative in a series of expert workshops, basing ourselves on theories, methods and findings from science fields such as global environmental input-output analysis, business modelling, industrial organisation, innovation sciences and transition studies. Our findings indicate that this dominant narrative suffers from at least three inconvenient truths. First, CE can lead to loss of GDP. Each doubling of product lifetimes will halve the related industrial production, while the required design changes may cost little. Second, the same mechanism can create losses of production jobs. This may not be compensated by extra maintenance, repair or refurbishing activities. Finally, ‘Product-as-a-Service’ business models supported by platform technologies are crucial for a CE transition. But by transforming consumers from owners to users, they lose independence and do not share in any value enhancement of assets (e.g., houses). As shown by Uber and AirBNB, platforms tend to concentrate power and value with providers, dramatically affecting the distribution of wealth. The real win-win potential of circularity is that the same societal welfare may be achieved with less production and fewer working hours, resulting in more leisure time. But it is perfectly possible that powerful platform providers capture most added value and channel that to their elite owners, at the expense of the purchasing power of ordinary people working fewer hours. Similar undesirable distributional effects may occur at the global scale: the service economies in the Global North may benefit from the additional repair and refurbishment activities, while economies in the Global South that are more oriented towards primary production will see these activities shrink. It is essential that CE research comes to grips with such effects. Furthermore, governance approaches mitigating unfair distribution of power and value are hence essential for a successful circularity transition.
LINK
City logistics is one of the causes of today's road congestion in our cities, but at the same time its efficiency is affected by the traffic problems. The driving behaviour and mission strategies used by vans and lorries operating in urban areas usually does not exploit modern infomobility solutions. CityLog, a project co-funded by the European Commission within the 7th Framework Programme, aims at increasing the sustainability and the efficiency of urban goods deliveries through an adaptive and integrated mission management and by innovative vehicle features. More particularly, CityLog integrates a wide range of logistics-oriented infomobility services that include an optimized pre-trip planner, a new type of navigation system based on enhanced maps and a last mile parcel tracking service to avoid unsuccessful deliveries. © 2011 IEEE.
LINK
In the autumn of 2020, an autonomous and electric delivery robot was deployed on the BUas campus for the distribution of goods. In addition to the actual field test of the robot, we conducted research into various aspects of autonomous delivery robots. In this contribution we discuss the test with the autonomous delivery robot itself, the adjustments we had to make because the campus was very quiet due to COVID-19 and therefore there was less to transport for the robot, and the perception of people. with regard to the delivery robot, on the possible future areas of application and on the learning experiences we have gained in the tests.