The sustainable energy transition asks for new and innovative solutions in the way society, government, energy market and clients (end users) approach energy distribution and consumption. The energy transition provides great opportunity to develop innovative solutions where in the dense built environment district heating and cooling are being strongly advocated.Traditionally, the energy systems in urban districts have been regulated by a top-down approach. With the rise of local and distributed sustainable sources for urban heating and cooling, the complexity of the heat/cold chain is increasing. Therefore, an organic and bottom-up approach is being requested, where the public authorities have a facilitating and/or directive role. There is a need for a new and open framework for collaboration between stakeholders. A framework that provides insight into the integral consideration of heating and cooling solutions on district level in terms of: organisation, technology and economy (OTE). This research therefore focuses on developing this integral framework towards widely supported heating and cooling solutions among district stakeholders.Through in-depth interviews, workshops and focus groups discussions, relevant stakeholders in local district heating/cooling of varying backgrounds and expertise have been consulted. This has led to two pillars in a framework. Firstly the definition of Key Success Factors and Key Performance Indicators to evaluate technical solutions in light of the respective context. Secondly, an iterative decision making process among district stakeholders where technical scenarios, respective financial business cases and market organisation are being negotiated. Fundamental proposition of the framework is the recurrent interaction between OTE factors throughout the entire decision making process. In order to constantly assure broad-based support, the underlying nature of possible barriers for collaboration are identified in a stakeholder matrix, informing a stakeholder strategy. It reveals an open insight of the interests, concerns, and barriers among all stakeholders, where solutions can be developed effectively.
DOCUMENT
Current methods for energy diagnosis in heating, ventilation and air conditioning (HVAC) systems are not consistent with process and instrumentation diagrams (P&IDs) as used by engineers to design and operate these systems, leading to very limited application of energy performance diagnosis in practice. In a previous paper, a generic reference architecture – hereafter referred to as the 4S3F (four symptoms and three faults) framework – was developed. Because it is closely related to the way HVAC experts diagnose problems in HVAC installations, 4S3F largely overcomes the problem of limited application. The present article addresses the fault diagnosis process using automated fault identification (AFI) based on symptoms detected with a diagnostic Bayesian network (DBN). It demonstrates that possible faults can be extracted from P&IDs at different levels and that P&IDs form the basis for setting up effective DBNs. The process was applied to real sensor data for a whole year. In a case study for a thermal energy plant, control faults were successfully isolated using balance, energy performance and operational state symptoms. Correction of the isolated faults led to annual primary energy savings of 25%. An analysis showed that the values of set probabilities in the DBN model are not outcome-sensitive. Link to the formal publication via its DOI https://doi.org/10.1016/j.enbuild.2020.110289
DOCUMENT
Research Questions • What are the characteristics of vulnerable populations in The Hague? • What are their needs in order to adapt to heatwaves, and how do they cope? • What are existing sustainable solutions for protecting vulnerable populations? • How can the municipality of The Hague increase urban resilience with regards to heat?
DOCUMENT
The key societal problem addressed by the EmPowerED consortium is the urgent need to accelerate and scale up the development of Positive Energy Districts (PEDs). Carbon neutral heating and cooling is a core element of the design of Positive Energy Districts (PEDS). However, many Dutch heat transition projects run behind schedule and are not compatible with this future vision of PEDs, making the heat transition a key factor in PED realization and upscaling. In this heat transition and the transition to PEDs, citizen engagement and support is a key societal factor and citizens need to be an integral part of the decision-making process on the realization of PEDs. Furthermore, technical, regulatory and financial uncertainties hamper the ability of decision makers to create PED system designs that have citizen support. Such system designs require a deep understanding of the relevant social, spatial, governance, legal, financial, and technical factors, and their interactions in PED system designs.