Background: Drug checking services (DCS) provide information about drug content and purity, alongside personalized feedback, to people who use drugs; however, the demographic and drug use characteristics of DCS clients are rarely reported. This paper describes these characteristics for clients of the Dutch DCS, the Drug Information and Monitoring System (DIMS). Methods: 1,530 participants completed a pen-and-paper questionnaire at one of eight participating DCS in the Netherlands in 2018. Results: The participants were mostly highly educated males in their twenties with no migration background. Experience with drugs prior to coming to the DCS was common. Only 0.7% indicated they had never used any of the twenty drugs studied. 93% of participants reported use of ecstasy or MDMA with an average of 6.3 years since first use. Conclusions: These results indicate that drug checking can be a valuable tool for public health services as it facilitates access to more difficult-to-reach communities who use drugs. It is unlikely that DCS encourage drug initiation, since almost all people who visit the Dutch DCS already report experience with drugs. However, DCS should be aware that their services might not be easily accessible or attractive to all demographic groups.
DOCUMENT
In de openbare les van mijn collega lector Raymond Pieters, is het domein van het lectoraat ‘Innovative Testing in Life Sciences & Chemistry’ toegelicht. Kort samengevat richt dit lectoraat zich op de ontwikkeling en toepassing van innovatieve teststrategieën om geneesmiddelen, voedingsmiddelen of chemicaliën (stoffen) te beoordelen op hun werkzaamheid (effectiviteit) en veiligheid. De nadruk ligt op de ontwikkeling van snelle, kosteneffectieve testmethoden die een relevante voorspelling van effecten op de gezondheid van de mens en het milieu opleveren én waarbij geen of minder proefdieren worden gebruikt. In mijn les zal ik u laten zien waar proefdieren voor gebruikt worden. Hierbij zal ik mij voornamelijk richten op de Nederlandse situatie. Ik zal ingaan op de wetenschappelijke en maatschappelijke wens om minder proefdieren te gebruiken en op de vraag wat we verstaan onder ‘alternatieven voor dierproeven’. Daarna zal ik bespreken waarom er in Nederland en Europa recentelijk meer aandacht is voor dit onderwerp. Het overzicht zal niet uitputtend zijn, maar zal u een goede indruk geven van het landschap. Ook zal ik stil staan bij de vraag: Waarom zijn we tot nog toe zo weinig succesvol geweest op het gebied van alternatieven voor dierproeven? Wat zijn de obstakels en wat kunnen we hier van leren? Hoe zouden we in de praktijk de toepassing van alternatieven kunnen stimuleren? Wat moet er beter, en hoe gaan we dat doen? Als we slimmer willen testen moeten we de huidige grenzen verleggen, of beter over de grenzen van ons vakgebied heen kijken. Ik zal aangeven waar prioriteiten liggen en hoe we de meeste ‘winst’ kunnen behalen in termen van proefdiervermindering in relatie tot productinnovatie. Tot slot zal ik aangeven welke bruggen we moeten bouwen en wat de rol is van de Hogeschool Utrecht
DOCUMENT
Abstract Specialist oncology nurses (SONs) have the potential to play a major role in monitoring and reporting adverse drug reactions (ADRs); and reduce the level of underreporting by current healthcare professionals. The aim of this study was to investigate the long term clinical and educational efects of real-life pharmacovigilance education intervention for SONs on ADR reporting. This prospective cohort study, with a 2-year follow-up, was carried out in the three postgraduate schools in the Netherlands. In one of the schools, the prescribing qualifcation course was expanded to include a lecture on pharmacovigilance, an ADR reporting assignment, and group discussion of self-reported ADRs (intervention). The clinical value of the intervention was assessed by analyzing the quantity and quality of ADR-reports sent to the Netherlands Pharmacovigilance Center Lareb, up to 2 years after the course and by evaluating the competences regarding pharmacovigilance of SONs annually. Eighty-eight SONs (78% of all SONs with a prescribing qualifcation in the Netherlands) were included. During the study, 82 ADRs were reported by the intervention group and 0 by the control group. This made the intervention group 105 times more likely to report an ADR after the course than an average nurse in the Netherlands. This is the frst study to show a signifcant and relevant increase in the number of well-documented ADR reports after a single educational intervention. The real-life pharmacovigilance educational intervention also resulted in a long-term increase in pharmacovigilance competence. We recommend implementing real-life, context- and problem-based pharmacovigilance learning assignments in all healthcare curricula.
MULTIFILE
ABSTRACT Background: We investigated if the addition of an inter-professional student-led medication review team (ISP-team) to standard care can increase the number of detected ADRs and reduce the number of ADRs 3 months after an outpatient visit. Research design and methods: In this controlled clinical trial, patients were allocated to standard care (control group) or standard care plus the ISP team (intervention group). The ISP team consisted of medical and pharmacy students and student nurse practitioners. The team performed a structured medication review and adjusted medication to reduce the number of ADRs. Three months after the outpatient visit, a clinical pharmacologist who was blinded for allocation performed a follow-up telephone interview to determine whether patients experienced ADRs. Results: During the outpatient clinic visit, significantly more (p < 0.001) ADRs were detected in the intervention group (n = 48) than in the control group (n = 10). In both groups, 60–63% of all detected ADRs were managed. Three months after the outpatient visit, significantly fewer (predominantly mild and moderately severe) ADRs related to benzodiazepine derivatives and antihypertensive causing dizziness were detected in the patients of the intervention group. Conclusions: An ISP team in addition to standard care increases the detection and management of ADRs in elderly patients resulting in fewer mild and moderately severe ADRs
MULTIFILE
The Junior Adverse Drug Event Manager (J-ADEM) team is a multifaceted intervention focusing on real-life education for medical students that has been shown to assist healthcare professionals in managing and reporting suspected adverse drug reactions (ADRs) to the Netherlands Pharmacovigilance Centre Lareb. The aim of this study was to quantify and describe the ADRs reported by the J-ADEM team and to determine the clinical potential of this approach. The J-ADEM team consisted of medical students tasked with managing and reporting ADRs in hospitalized patients. All ADRs screened and reported by J-ADEM team were recorded anonymously, and categorized and analysed descriptively. From August 2018 through January 2020, 209 patients on two wards in an academic hospital were screened for ADR events. The J-ADEM team reported 101 ADRs. Although most ADRs (67%) were first identified by healthcare professionals and then reported by the J-ADEM team, the team also reported an additional 33 not previously identified serious ADRs. In 10% of all reported ADRs, the J-ADEM team helped optimize ADR treatment. The ADR reports were largely well-documented (78%), and ADRs were classified as type A (66%), had a moderate or severe severity (85%) and were predominantly avoidable reactions (69%). This study shows that medical students are able to screen patients for ADRs, can identify previously undetected ADRs and can help optimize ADR management. They significantly increased (by 300%) the number of ADR reports submitted, showing that the J-ADEM team can make a valuable clinical contribution to hospital care.
MULTIFILE
Abstract Managing adverse drug reactions (ADRs) is a challenge, especially because most healthcare professionals are insufficiently trained for this task. Since context-based clinical pharmacovigilance training has proven effective, we assessed the feasibility and effect of a creating a team of Junior-Adverse Drug Event Managers (J-ADEMs). The J-ADEM team consisted of medical students (1st–6th year) tasked with managing and reporting ADRs in hospitalized patients. Feasibility was evaluated using questionnaires. Student competence in reporting ADRs was evaluated using a case-control design and questionnaires before and after J-ADEM program participation. From Augustus 2018 to Augustus 2019, 41 students participated in a J-ADEM team and screened 136 patients and submitted 65 ADRs reports to the Netherlands Pharmacovigilance Center Lareb. Almost all patients (n = 61) found it important that “their” ADR was reported, and all (n = 62) patients felt they were taken seriously by the J-ADEM team. Although attending physicians agreed that the ADRs should have been reported, they did not do so themselves mainly because of a “lack of knowledge and attitudes” (50%) and “excuses made by healthcare professionals” (49%). J-ADEM team students were significantly more competent than control students in managing ADRs and correctly applying all steps for diagnosing ADRs (control group 38.5% vs. intervention group 83.3%, p < 0.001). The J-ADEM team is a feasible approach for detecting and managing ADRs in hospital. Patients were satisfied with the care provided, physicians were supported in their ADR reporting obligations, and students acquired relevant basic and clinical pharmacovigilance skills and knowledge, making it a win-win-win intervention.
MULTIFILE
Aim: In-hospital prescribing errors (PEs) may result in patient harm, prolonged hospitalization and hospital (re)admission. These events are associated with pressure on healthcare services and significant healthcare costs. To develop targeted interventions to prevent or reduce in-hospital PEs, identification and understanding of facilitating and protective factors influencing in-hospital PEs in current daily practice is necessary, adopting a Safety-II perspective. The aim of this systematic review was to create an overview of all factors reported in the literature, both protective and facilitating, as influencing in-hospital PEs. Methods: PubMed, EMBASE.com and the Cochrane Library (via Wiley) were searched, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement, for studies that identified factors influencing in-hospital PEs. Both qualitative and quantitative study designs were included. Results: Overall, 19 articles (6 qualitative and 13 quantitative studies) were included and 40 unique factors influencing in-hospital PEs were identified. These factors were categorized into five domains according to the Eindhoven classification (‘organization-related’, ‘prescriber-related’, ‘prescription-related’, ‘technologyrelated’ and ‘unclassified’) and visualized in an Ishikawa (Fishbone) diagram. Most of the identified factors (87.5%; n = 40) facilitated in-hospital PEs. The most frequently identified facilitating factor (39.6%; n = 19) was ‘insufficient (drug) knowledge, prescribing skills and/or experience of prescribers’. Conclusion: The findings of this review could be used to identify points of engagement for future intervention studies and help hospitals determine how to optimize prescribing. A multifaceted intervention, targeting multiple factors might help to circumvent the complex challenge of in-hospital PEs.
MULTIFILE
Clear role descriptions promote the quality of interprofessional collaboration. Currently, it is unclear to what extent healthcare professionals consider pharmaceutical care (PC) activities to be nurses’ responsibility in order to obtain best care quality. This study aimed to create and evaluate a framework describing potential nursing tasks in PC and to investigate nurses’ level of responsibility. A framework of PC tasks and contextual factors was developed based on literature review and previous DeMoPhaC project results. Tasks and context were cross-sectionally evaluated using an online survey in 14 European countries. A total of 923 nurses, 240 physicians and 199 pharmacists responded. The majority would consider nurses responsible for tasks within: medication self-management (86–97%), patient education (85–96%), medication safety (83–95%), monitoring adherence (82–97%), care coordination (82–95%), and drug monitoring (78–96%). The most prevalent level of responsibility was ‘with shared responsibility’. Prescription management tasks were considered to be nurses’ responsibility by 48–81% of the professionals. All contextual factors were indicated as being relevant for nurses’ role in PC by at least 74% of the participants. No task nor contextual factor was removed from the framework after evaluation. This framework can be used to enable healthcare professionals to openly discuss allocation of specific (shared) responsibilities and tasks.
DOCUMENT
Despite changing attitudes towards animal testing and current legislation to protect experimental animals, the rate of animal experiments seems to have changed little in recent years. On May 15–16, 2013, the In Vitro Testing Industrial Platform (IVTIP) held an open meeting to discuss the state of the art in alternative methods, how companies have, can, and will need to adapt and what drives and hinders regulatory acceptance and use. Several key messages arose from the meeting. First, industry and regulatory bodies should not wait for complete suites of alternative tests to become available, but should begin working with methods available right now (e.g., mining of existing animal data to direct future studies, implementation of alternative tests wherever scientifically valid rather than continuing to rely on animal tests) in non-animal and animal integrated strategies to reduce the numbers of animals tested. Sharing of information (communication), harmonization and standardization (coordination), commitment and collaboration are all required to improve the quality and speed of validation, acceptance, and implementation of tests. Finally, we consider how alternative methods can be used in research and development before formal implementation in regulations. Here we present the conclusions on what can be done already and suggest some solutions and strategies for the future.
DOCUMENT
Aims: Prescribing medication is a complex process that, when done inappropriately, can lead to adverse drug events, resulting in patient harm and hospital admissions. Worldwide cost is estimated at 42 billion USD each year. Despite several efforts in the past years, medication-related harm has not declined. The aim was to determine whether a prescriber-focussed participatory action intervention, initiated by a multidisciplinary pharmacotherapy team, is able to reduce the number of in-hospital prescriptions containing ≥1 prescribing error (PE), by identifying and reducing challenges in appropriate prescribing. Methods: A prospective single-centre before- and after study was conducted in an academic hospital in the Netherlands. Twelve clinical wards (medical, surgical, mixed and paediatric) were recruited. Results: Overall, 321 patients with a total of 2978 prescriptions at baseline were compared with 201 patients with 2438 prescriptions postintervention. Of these, m456 prescriptions contained ≥1 PE (15.3%) at baseline and 357 prescriptions contained ≥1 PEs (14.6%) postintervention. PEs were determined in multidisciplinary consensus. On some study wards, a trend toward a decreasing number of PEs was observed. The intervention was associated with a nonsignificant difference in PEs (incidence rate ratio 0.96, 95% confidence interval 0.83–1.10), which was unaltered after correction. The most important identified challenges were insufficient knowledge beyond own expertise, unawareness of guidelines and a heavy workload. Conclusion: The tailored interventions developed with and implemented by stakeholders led to a statistically nonsignificant reduction in inappropriate in-hospital prescribing after a 6-month intervention period. Our prescriber-focussed participatory action intervention identified challenges in appropriate in-hospital prescribing on prescriber- and organizational level.
MULTIFILE