In recent years, the number of publications on innovation in the construction industry has increased. Many of these documents address qualitative issues, e.g. policies for innovation and present case studies. A more quantitative approach is taken in this paper, which is the continuation of a previous study. It focuses on main types and sources of innovation in the construction industry, and includes an analysis of 55 years of publications in two leading Dutch professional journals. The results show a recent increase in innovation, with two-thirds of innovations coming out of supplying industries. Construction companies contribute mainly in process innovations. Innovation in construction remains to be technology- rather than market-driven. Regulations have a surprising impact, as over one-third of all counted new innovations are related to new regulations.
Abstract from article: The Dutch healthcare system has changed towards a system of regulated competition to contain costs and to improve efficiency and quality of care. This paper provides: (1) a brief as-is overview of the changes for primary care, based on explorative literature reviews; (2) provides noteworthy remarks as for the way primary and secondary healthcare is organised; (3) an example of an E-health portal illustrating implemented processes within the Dutch context and (4) a proposed research agenda on various e-health topics. Noteworthy remarks are: (1) government, insurer, healthcare provider and patient are main actors within the Dutch healthcare system; (2) general practitioners (GP’s) are gatekeepers to secondary and other care providers; (3) the illustrated portal with a patient oriented design, provides access to applications implemented at care providers resulting in increased electronic availability and increased patient satisfaction; (4) a variety of fragmented information systems at health care providers exists, which leaves room for standardisation and increased efficiency. We end with suggestions for future research.
Since the film of Al Gore An inconvenient truth, sustainability stands high on the national agenda of most countries. Concern for the environment is one of the main reasons in combination with opportunities to innovate. In general, innovation and entrepreneurship are important in the realm of national economies because they hold the key to the continuity and growth of companies (e.g. Hage, 1999; Cooper, 1987; Van de Ven, 2007) and economic growth within a country. It is therefore obvious that national governments are investing money to enable and improve innovation management and entrepreneurial behaviour within organizations with sustainability in mind. Policy measures are aimed at reduction of carbon dioxide emission, waste management and alternative use of energy sources and materials. In line with these measures companies are urged to integrate sustainability in their business processes and search for innovative sustainable solutions. While on a national level policy measures towards a more sustainable society are defined, enterprises - and especially small and medium sized companies - lag behind and fail in incorporating these measures appropriately in their day-to day business. As a result research for sustainability has become an important driver for innovation. Within the Centre for Innovation and Entrepreneurship (CI&E) at The Hague University of Applied Sciences we have taken the initiative to develop an innovation and research program for the construction industry to help small and medium sized companies (SME's) integrate sustainability in their business processes, while simultaneously professionalizing students and lecturers. This paper is part of ongoing research among 40 companies in the region of South-Holland. The companies are mostly SME's varying from very small (6 employees) to middle-sized (more than 100). According to Rennings (2000) while innovation processes toward sustainable development have received increasing attention during the past years, theoretical and methodological approaches to analyse these processes are poorly developed. This paper describes a theoretical approach developed at our university's Centre for Innovation and Entrepreneurship, which combines education and research. It is an inductive approach that departs from real-life problems encountered by companies, and is aimed at developing a model that supports companies in integrating sustainability in their business and innovation processes. We describe the experiences so far with a number of companies in the construction industry, which participate in the innovation and research program described above and the barriers they encounter. Our sustainable program is centred on four themes: cradle-to-cradle, social corporate responsibility, climateneutral construction and sustainability and customer orientation in the building process. It is an exploratory research in which students and undergraduates are involved under the supervision of a lecturer as senior researcher of this program. Through an in-depth analysis of the companies, participant observation and indepth interviews with the owners/directors of the companies, experts and prominent sustainable trendsetters, insight is gained in innovation processes towards sustainable development. Preliminary conclusions show that on a company level one of the main bottlenecks is the dilemma posed by the need for profit for the continuity of a company, while taking into account people and planet. The main bottleneck is however the inability of companies to translate policy measures into strategy and operations. This paper is set up as follows. In section 2 we give an account of European and Dutch policy measures geared at stimulating sustainability in a business context and especially the building and construction industry. In section 3 an overview is given of the economic importance and characteristics of the Dutch building and construction industry and the problems in this sector. These problems are offset against the opportunity of sustainability as a strategic option for SME's in this sector. In section 4 the innovation and research program developed at the CI&E is introduced in the context of the main research question. Following that in section 5, methodological choices are addressed and the research design is presented. We finalize this paper in section 6 with our conclusions and recommendations for further research.
The Dutch floriculture is globally leading, and its products, knowledge and skills are important export products. New challenges in the European research agenda include sustainable use of raw materials such as fertilizer, water and energy, and limiting the use of pesticides. Greenhouse growers however have little control over crop growth conditions in the greenhouse at individual plant level. The purpose of this project, ‘HiPerGreen’, is to provide greenhouse owners with new methods to monitor the crop growth conditions in their greenhouse at plant level, compare the measured growth conditions and the measured growth with expected conditions and expected growth, to point out areas with deviations, recommend counter-measures and ultimately to increase their crop yield. The main research question is: How can we gather, process and present greenhouse crop growth parameters over large scale greenhouses in an economical way and ultimately improve crop yield? To provide an answer to this question, a team of university researchers and companies will cooperate in this applied research project to cover several different fields of expertise The application target is floriculture: the production of ornamental pot plants and cut flowers. Participating companies are engaged in the cultivation of pot plans, flowers and suppliers of greenhouse technology. Most of the parties fall in the SME (MKB) category, in line with the RAAK MKB objectives.Finally, the Demokwekerij and Hortipoint (the publisher of the international newsletter on floriculture) are closely involved. The project will develop new knowledge for a smart and rugged data infrastructure for growth monitoring and growth modeling in the greenhouse. In total the project will involve approximately 12 (teacher) researchers from the universities and about 60 students, who will work in the form of internships and undergraduate studies of interesting questions directly from the participating companies.